
Complex Numbers Primer 
 
Before I get started on this let me first make it clear that this document is not intended to 
teach you everything there is to know about complex numbers.  That is a subject that can 
(and does) take a whole course to cover.  The purpose of this document is to give you a 
brief overview of complex numbers, notation associated with complex numbers, and 
some of the basic operations involving complex numbers. 
 
This document has been written with the assumption that you’ve seen complex numbers 
at some point in the past, know (or at least knew at some point in time) that complex 
numbers can be solutions to quadratic equations, know (or recall) 1i = − , and that 
you’ve seen how to do basic arithmetic with complex numbers.  If you don’t remember 
how to do arithmetic I will show an example or two to remind you how to do arithmetic, 
but I’m going to assume that you don’t need more than that as a reminder.   
 
For most students the assumptions I’ve made above about their exposure to complex 
numbers is the extent of their exposure.  Problems tend to arise however because most 
instructors seem to assume that either students will see beyond this exposure in some 
later class or have already seen beyond this in some earlier class.  Students are then all of 
a sudden expected to know more than basic arithmetic of complex numbers but often 
haven’t actually seen it anywhere and have to quickly pick it up on their own in order to 
survive in the class. 
 
That is the purpose of this document. We will go beyond the basics that most students 
have seen at some point and show you some of the notation and operations involving 
complex numbers that many students don’t ever see once they learn how to deal with 
complex numbers as solutions to quadratic equations.  We’ll also be seeing a slightly 
different way of looking at some of the basics that you probably didn’t see when you 
were first introduced to complex numbers and proving some of the basic facts. 
 
The first section is a more mathematical definition of complex numbers and is not really 
required for understanding the remainder of the document.  It is presented solely for those 
who might be interested. 
 
The second section (arithmetic) is assumed to be mostly a review for those reading this 
document and can be read if you need a quick refresher on how to do basic arithmetic 
with complex numbers.  Also included in this section is a more precise definition of 
subtraction and division than is normally given when a person is first introduced to 
complex numbers.  Again, understanding these definitions is not required for the 
remainder of the document they are only presented so you can say you’ve seen it. 
 
The remaining sections are the real point of this document and involve the topics that are 
typically not taught when students are first exposed to complex numbers. 
 
So, with that out of the way, let’s get started… 
 



 The Definition 
As I’ve already stated, I am assuming that you have seen complex numbers to this point 
and that you’re aware that 1i = −  and so 2 1i = − .  This is an idea that most people first 
see in an algebra class (or wherever they first saw complex numbers) and 1i = −  is 
defined so that we can deal with square roots of negative numbers as follows, 
 ( )( )100 100 1 100 1 100 10i i− = − = − = =  
 
What I’d like to do is give a more mathematical definition of a complex numbers and 
show that 2 1i = −  (and hence 1i = − ) can be thought of as a consequence of this 
definition.  We’ll also take a look at how we define arithmetic for complex numbers.   
 
What we’re going to do here is going to seem a little backwards from what you’ve 
probably already seen but is in fact a more accurate and mathematical definition of 
complex numbers.  Also note that this section is not really required to understand the 
remaining portions of this document.  It is here solely to show you a different way to 
define complex numbers. 
 
So, let’s give the definition of a complex number. 
 
Given two real numbers a and b we will define the complex number z as, 
 
 z a bi= +  (1) 
 
Note that at this point we’ve not actually defined just what i is at this point.  The number 
a is called the real part of z and the number b is called the imaginary part of z and are 
often denoted as, 
 
 Re Imz a z b= =  (2) 
 
There are a couple of special cases that we need to look at before proceeding.  First, let’s 
take a look at a complex number that has a zero real part, 

0z bi bi= + =  
In these cases, we call the complex number a pure imaginary number. 
 
Next, let’s take a look at a complex number that has a zero imaginary part, 

0z a i a= + =  
In this case we can see that the complex number is in fact a real number.  Because of this 
we can think of the real numbers as being a subset of the complex numbers. 
 
We next need to define how we do addition and multiplication with complex numbers.  
Given two complex numbers 1z a bi= +  and 2z c di= +  we define addition and 
multiplication as follows, 
 



 ( ) ( )1 2z z a c b d i+ = + + +  (3) 
 ( ) ( )1 2z z ac bd ad cb i= − + +  (4) 
 
Now, if you’ve seen complex numbers prior to this point you will probably recall that 
these are the formulas that were given for addition and multiplication of complex 
numbers at that point.  However, the multiplication formula that you were given at that 
point in time required the use of 2 1i = −  to completely derive and for this section we 
don’t yet know that is true.  In fact, as noted previously 2 1i = −  will be a consequence of 
this definition as we’ll see shortly. 
 
Above we noted that we can think of the real numbers as a subset of the complex 
numbers.  Note that the formulas for addition and multiplication of complex numbers 
give the standard real number formulas as well.  For instance given the two complex 
numbers, 
 1 20 0z a i z c i= + = +  
the formulas yield the correct formulas for real numbers as seen below. 
 

 
( ) ( )

( ) ( )( ) ( ) ( )( )
1 2

1 2

0 0

0 0 0 0

z z a c i a c

z z ac a c i ac

+ = + + + = +

= − + + =
 

 
The last thing to do in this section is to show that 2 1i = −  is a consequence of the 
definition of multiplication.  However, before we do that we need to acknowledge that 
powers of complex numbers work just as they do for real numbers.  In other words, if n is 
a positive integer we will define exponentiation as, 
 

 times

n

n

z z z z= ⋅ ⋅L14243  

 
So, let’s start by looking at 2i , use the definition of exponentiation and the use the 
definition of multiplication on that.  Doing this gives, 

 
( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

2

0 1 0 1

0 0 1 1 0 1 0 1

1

i i i
i i

i

= ⋅

= + +

= − + +

= −

 

 
So, by defining multiplication as we’ve done above we get that 2 1i = −  as a consequence 
of the definition instead of just stating that this is a true fact.  If we now take  to be the 
standard square root, i.e. what did we square to get the quantity under the radical, we can 
see that 1i = − . 
 
 
 



 Arithmetic 

Before proceeding in this section let me first say that I’m assuming that you’ve seen 
arithmetic with complex numbers at some point before and most of what is in this section 
is going to be a review for you.  I am also going to be introducing subtraction and 
division in a way that you probably haven’t seen prior to this point, but the results will be 
the same and aren’t important for the remaining sections of this document. 
 
In the previous section we defined addition and multiplication of complex numbers and 
showed that 2 1i = −  is a consequence of how we defined multiplication.  However, in 
practice, we generally don’t multiply complex numbers using the definition.  In practice 
we tend to just multiply two complex numbers much like they were polynomials and then 
make use of the fact that we now know that 2 1i = − . 
 
Just so we can say that we’ve worked an example let’s do a quick addition and 
multiplication of complex numbers.   
 
Example 1  Compute each of the following. 

(a) ( ) ( )58 2 17i i− + −  
(b) ( ) ( )6 3 10 8i i+ +  
(c) ( ) ( )4 2 4 2i i+ −  

Solution 
As noted above, I’m assuming that this is a review for you and so won’t be going into 
great detail here. 
(a) ( ) ( )58 2 17 58 2 17 60 18i i i i i− + − = − + − = −  

(b) ( ) ( ) ( )26 3 10 8 60 48 30 24 60 78 24 1 36 78i i i i i i i+ + = + + + = + + − = +  

(c) ( ) ( ) 24 2 4 2 16 8 8 4 16 4 20i i i i i+ − = − + − = + =  
 
It is important to recall that sometimes when adding or multiplying two complex numbers 
the result might be a real number as shown in the third part of the previous example! 
 
The third part of the previous example also gives a nice property about complex numbers.  
 
 ( ) ( ) 2 2a bi a bi a b+ − = +  (5) 
 
We’ll be using this fact with division and looking at it in slightly more detail in the next 
section. 
 
Let’s now take a look at the subtraction and division of two complex numbers.  
Hopefully, you recall that if we have two complex numbers, 1z a bi= +  and 2z c di= +  
then you subtract them as, 
 ( ) ( ) ( ) ( )1 2z z a bi c di a c b d i− = + − + = − + −  (6) 



 
And that division of two complex numbers, 

 1

2

z a bi
z c di

+
=

+
 (7) 

 
can be thought of as simply a process for eliminating the i from the denominator and 
writing the result as a new complex number u vi+ . 
 
Let’s take a quick look at an example of both to remind us how they work. 
 
Example 2  Compute each of the following. 

(a) ( ) ( )58 2 17i i− − −  

(b) 6 3
10 8

i
i

+
+

 

(c) 5
1 7

i
i−

 

Solution 
(a) There really isn’t too much to do here so here is the work, 
 ( ) ( )58 2 17 58 2 17 56 16i i i i i− − − = − − + = +  
(b) Recall that with division we just need to eliminate the i from the denominator and 
using (5) we know how to do that.  All we need to do is multiply the numerator and 
denominator by 10 8i−  and we will eliminate the i from the denominator. 

 

( )
( )

( )
( )

2

6 3 10 86 3
10 8 10 8 10 8

60 48 30 24
100 64

84 18
164

84 18 21 9
164 164 41 82

i ii
i i i

i i i

i

i i

+ −+
=

+ + −

− + −
=

+
−

=

= − = −

 

(c) We’ll do this one a little quicker. 

 
( )

( )
( )
1 75 5 35 5 7 1

1 7 1 7 1 7 1 49 10 10
ii i i i

i i i
+ − +

= = = − +
− − + +

 

 
Now, for the most part this is all that you need to know about subtraction and 
multiplication of complex numbers for this rest of this document.  However, let’s take a 
look at a more precise and mathematical definition of both of these.  If you aren’t 
interested in this then you can skip this and still be able to understand the remainder of 
this document.   
 
The remainder of this document involves topics that are typically first taught in a 
Abstract/Modern Algebra class.  Since we are going to be applying them to the field of 



complex variables we won’t be going into great detail about the concepts.  Also note that 
we’re going to be skipping some of the ideas and glossing over some of the details that 
don’t really come into play in complex numbers.  This will especially be true with the 
“definitions” of inverses.  The definitions I’ll be giving below are correct for complex 
numbers, but in a more general setting are not quite correct.  You don’t need to worry 
about this in general to understand what were going to be doing below.  I just wanted to 
make it clear that I’m skipping some of the more general definitions for easier to work 
with definitions that are valid in complex numbers. 
 
Okay, now that I’ve got the warnings/notes out of the way let’s get started on the actual 
topic… 
 
Technically, the only arithmetic operations that are defined on complex numbers are 
addition and multiplication.  This means that both subtraction and division will, in some 
way, need to be defined in terms of these two operations.  We’ll start with subtraction 
since it is (hopefully) a little easier to see. 
 
We first need to define something called an additive inverse.  An additive inverse is 
some element typically denoted by z−  so that 
 ( ) 0z z+ − =  (8) 
 
Now, in the general field of abstract algebra, z−  is just the notation for the additive 
inverse and in many cases is NOT give by ( )1z z− = − !  Luckily for us however, with 
complex variables that is exactly how the additive inverse is defined and so for a given 
complex number z a bi= +  the additive inverse, z− , is given by, 

( )1z z a bi− = − = − −  
It is easy to see that this does meet the definition of the additive inverse and so that won’t 
be shown. 
 
With this definition we can now officially define the subtraction of two complex 
numbers.  Given two complex numbers 1z a bi= +  and 2z c di= +  we define the 
subtraction of them as, 
 ( )1 2 1 2z z z z− = + −  (9) 
 
Or, in other words, when subtracting 2z  from 1z  we are really just adding the additive 
inverse of 2z  (which is denoted by 2z− ) to 1z .  If we further use the definition of the 
additive inverses for complex numbers we can arrive at the formula given above for 
subtraction. 
 ( ) ( ) ( ) ( ) ( )1 2 1 2z z z z a bi c di a c b d i− = + − = + + − − = − + −  
 
So, that wasn’t too bad I hope.  Most of the problems that students have with these kinds 
of topics is that they need to forget some notation and ideas that they are very used to 
working with.  Or, to put it another way, you’ve always been taught that z− is just a 



shorthand notation for ( )1 z− , but in the general topic of abstract algebra this does not 
necessarily have to be the case.  It’s just that in all of the examples where you are liable 
to run into the notation z−  in “real life”, whatever that means, we really do mean 

( )1z z− = − . 
 
Okay, now that we have subtraction out of the way, let’s move on to division.  As with 
subtraction we first need to define an inverse.  This time we’ll need a multiplicative 
inverse.  A multiplicative inverse for a non-zero complex number z is an element denoted 
by 1z−  such that 
 1 1z z − =  
Now, again, be careful not to make the assumption that the “exponent” of -1 on the 
notation is in fact an exponent.  It isn’t!  It is just a notation that is used to denote the 
multiplicative inverse.  With real (non-zero) numbers this turns out to be a real exponent 
and we do have that  

 1 14
4

− =  

for instance.  However, with complex numbers this will not be the case!  In fact, let’s see 
just what the multiplicative inverse for a complex number is.  Let’s start out with the 
complex number z a bi= +  and let’s call its multiplicative inverse 1z u vi− = + .  Now, we 
know that we must have  
 1 1z z − =  
so, let’s actual do the multiplication. 

 
( )( )
( ) ( )

1

1

zz a bi u vi

au bv av bu i

− = + +

= − + +

=

 

 
This tells us that we have to have the following, 
 1 0au bv av bu− = + =  
Solving this system of two equations for the two unknowns u and v (remember a and b 
are known quantities from the original complex number) gives, 

 2 2 2 2

a bu v
a b a b

= = −
+ +

 

Therefore, the multiplicative inverse of the complex number z is,  

 1
2 2 2 2

a bz i
a b a b

− = −
+ +

 (10) 

 
As you can see, in this case, the “exponent” of -1 is not in fact an exponent!  Again, you 
really need to forget some notation that you’ve become familiar with in other math 
courses. 
 



So, now that we have the definition of the multiplicative inverse we can finally define 
division of two complex numbers.  Suppose that we have two complex numbers 1z and 

2z  then the division of these two is defined to be, 

 11
1 2

2

z z z
z

−=  (11) 

 
In other words, division is defined to be the multiplication of the numerator and the 
multiplicative inverse of the denominator.  Note as well that this actually does match with 
the process that we used above.  Let’s take another look at one of the examples that we 
looked at earlier only this time let’s do it using multiplicative inverses.  So, let’s start out 
with the following division. 

 ( )( ) 16 3 6 3 10 8
10 8

i i i
i

−+
= + +

+
 

 
We now need the multiplicative inverse of the denominator and using (10) this is, 

 ( ) 1
2 2 2 2

10 8 10 810 8
10 8 10 8 164

ii i− −
+ = − =

+ +
 

Now, we can do the multiplication, 

 ( ) ( ) ( )
2

16 3 10 8 60 48 30 24 21 96 3 10 8 6 3
10 8 164 164 41 82

i i i i ii i i i
i

−+ − − + −
= + + = + = = −

+
 

 
Notice that the second to last step is identical to one of the steps we had in the original 
working of this problem and, of course, the answer is the same. 
 
As a final topic let’s note that if we don’t want to remember the formula for the 
multiplicative inverse we can get it by using the process we used in the original 
multiplication.  In other words, to get the multiplicative inverse we can do the following 

 ( ) ( ) ( )
1

2 2

1 10 8 10 810 8
10 8 10 8 10 8

i ii
i i

− − −
+ = =

+ − +
 

 
As you can see this is essentially the process we used in doing the division initially. 
 
 
 



 Conjugate and Modulus 
In the previous section we looked at algebraic operations on complex numbers.  There are 
a couple of other operations that we should take a look at since they tend to show up on 
occasion.  We’ll also take a look at quite a few nice facts about these operations. 
 
Complex Conjugate 
The first one we’ll look at is the complex conjugate, (or just the conjugate).  Given the 
complex number z a bi= +  the complex conjugate is denoted by z  and is defined to be, 
 z a bi= −  (1) 
 
In other words, we just switch the sign on the imaginary part of the number. 
 
Here are some basic facts about conjugates. 
 z z=  (2) 
 
 1 2 1 2z z z z± = ±  (3) 
 
 1 2 1 2z z z z=  (4) 
 

 1 1

2 2

z z
z z

 
= 

 
 (5) 

 
The first one just says that if we conjugate twice we get back to what we started with 
originally and hopefully this makes some sense.  The remaining three just say we can 
break up sum, differences, products and quotients into the individual pieces and then 
conjugate. 
 
So, just so we can say that we worked a number example or two let’s do a couple of 
examples illustrating the above facts. 
 
Example 1  Compute each of the following. 

(a) z  for 3 15z i= −  
(b) 1 2z z−  for 1 5z i= +  and 2 8 3z i= − +  
(c) 1 2z z−  for 1 5z i= +  and 2 8 3z i= − +  

Solution 
There really isn’t much to do with these other than to so the work so, 
(a) 3 15 3 15 3 15z i z i i z= + ⇒ = + = − =  
Sure enough we can see that after conjugating twice we get back to our original number. 
(b) 1 2 1 213 2 13 2 13 2z z i z z i i− = − ⇒ − = − = +  

(c) ( ) ( )1 2 5 8 3 5 8 3 13 2z z i i i i i− = + − − + = − − − − = +  

We can see that results from (b) and (c) are the same as the fact implied they would be. 



 
There is another nice fact that uses conjugates that we should probably take a look at.  
However, instead of just giving the fact away let’s derive it.  We’ll start with a complex 
number z a bi= +  and then perform each of the following operations. 

 ( ) ( )
2 2

z z a bi a bi z z a bi a bi
a bi

+ = + + − − = + − −

= =
 

Now, recalling that Re z a=  and Im z b=  we see that we have, 

 Re Im
2 2

z z z zz z+ −
= =  (6) 

Modulus 
The other operation we want to take a look at in this section is the modulus of a complex 
number.  Given a complex number z a bi= +  the modulus is denoted by z  and is 
defined by 
 2 2z a b= +  (7) 
 
Notice that the modulus of a complex number is always a real number and in fact it will 
never be negative since square roots always return a positive number or zero depending 
on what is under the radical. 
 
Notice that if z is a real number (i.e. 0z a i= + ) then, 
 2z a a= =  
where the ⋅  on the z is the modulus of the complex number and the ⋅  on the a is the 
absolute value of a real number (recall that in general for any real number a we have 

2a a= ).  So, from this we can see that for real numbers the modulus and absolute 
value are essentially the same thing. 
 
We can get a nice fact about the relationship between the modulus of a complex numbers 
and its real and imaginary parts.  To see this let’s square both sides of (7) and use the fact 
that Re z a=  and Im z b= .  Doing this we arrive at 
 ( ) ( )2 2 22 2 Re Imz a b z z= + = +  
Since all three of these terms are positive we can drop the Im z part on the left which 
gives the following inequality, 
 ( ) ( ) ( )2 2 2 2Re Im Rez z z z= + ≥  
If we then square root both sides of this we get, 
 Rez z≥  
where the ⋅  on the z is the modulus of the complex number and the ⋅  on the Re z are 

absolute value bars.  Finally, for any real number a we also know that a a≤  (absolute 
value…) and so we get, 
 Re Rez z z≥ ≥  (8) 



 
We can use a similar argument to arrive at, 
 Im Imz z z≥ ≥  (9) 
 
There is a very nice relationship between the modulus of a complex number and it’s 
conjugate.  Let’s start with a complex number z a bi= +  and take a look at the following 
product. 
 ( )( ) 2 2z z a bi a bi a b= + − = +  
From this product we can see that 
 2z z z=  (10) 
This is a nice and convenient fact on occasion. 
 
Notice as well that in computing the modulus the sign on the real and imaginary part of 
the complex number won’t affect the value of the modulus and so we can also see that, 
 z z=  (11) 
and 
 z z− =  (12) 
 
We can also now formalize the process for division from the previous section now that 
we have the modulus and conjugate notations.  In order to get the i out of the 
denominator of the quotient we really multiplied the numerator and denominator by the 
conjugate of the denominator.  Then using (10) we can simplify the notation a little.  
Doing all this gives the following formula for division, 

 1 1 2 1 2
2

2 2 2 2

z z z z z
z z z z

= =  

 
Here’s a quick example illustrating this, 
 

Example 2  Evaluate 6 3
10 8

i
i

+
+

. 

Solution 
In this case we have 1 6 3z i= +  and 2 10 8z i= + .  Then computing the various parts of the 
formula gives, 
 2 2 2

2 210 8 10 8 164z i z= − = + =  
The quotient is then, 

 ( ) ( ) 26 3 10 86 3 60 48 30 24 21 9
10 8 164 164 41 82

i ii i i i i
i

+ −+ − + −
= = = −

+
 

 
Here are some more nice facts about the modulus of a complex number. 
 
 If 0  then  0z z= =  (13) 



 
 1 2 1 2z z z z=  (14) 
 

 11

2 2

zz
z z

=  (15) 

 
Property (13) should make some sense to you.  If the modulus is zero then 2 2 0a b+ = , 
but the only way this can be zero is if both a and b are zero.  
 
To verify (14) consider the following, 
 

 

( ) ( )
( ) ( )

2
1 2 1 2 1 2

1 2 1 2

1 1 2 2
2 2

1 2

using  property (10)

using property (4)
rearranging terms

using property (10) again (twice)

z z z z z z

z z z z
z z z z

z z

=

=

=

=

 

 
So, from this we can see that 
 2 2 2

1 2 1 2z z z z=  
 
Finally, recall that we know that the modulus is always positive so take the square root of 
both sides to arrive at 
 1 2 1 2z z z z=  
 
Property (15) can be verified using a similar argument. 
 
Triangle Inequality and Variants 
Properties (14) and (15) relate the modulus of a product/quotient of two complex 
numbers to the product/quotient of the modulus of the individual numbers.  We now need 
to take a look at a similar relationship for sums of complex numbers.  This relationship is 
called the triangle inequality and is, 
 1 2 1 2z z z z+ ≤ +  (16) 
 
We’ll also be able to use this to get a relationship for the difference of complex numbers. 
 
The triangle inequality is actually fairly simple to prove so let’s do that.  We'll start with 
the left side squared and use (10) and (3) to rewrite it a little. 
 ( )( ) ( )( )2

1 2 1 2 1 2 1 2 1 2z z z z z z z z z z+ = + + = + +  
Now multiply out the right side to get, 
 2

1 2 1 1 1 2 2 1 2 2z z z z z z z z z z+ = + + +  (17) 
Next notice that, 



 2 1 2 1 2 1z z z z z z= =  
and so using (6), (8) and (11) we can write middle two terms of the right side of (17) as 
 ( )1 2 2 1 1 2 1 2 1 2 1 2 1 2 1 22Re 2 2 2z z z z z z z z z z z z z z z z+ = + = ≤ = =  
 
Also use (10) on the first and fourth term in (17) to write them as, 
 2 2

1 1 1 2 2 2z z z z z z= =  
 
With the rewrite on the middle two terms we can now write (17) as 

 

( )

2
1 2 1 1 1 2 2 1 2 2

2 2
1 1 2 2 1 1

2 2
1 1 2 1

2
1 2

2

z z z z z z z z z z

z z z z z z

z z z z

z z

+ = + + +

= + + +

≤ + +

= +

 

So, putting all this together gives, 
 ( )22

1 2 1 2z z z z+ ≤ +  
Now, recalling that the modulus is always positive we can square root both sides and 
we’ll arrive at the triangle inequality. 
 1 2 1 2z z z z+ ≤ +  
 
There are several variations of the triangle inequality that can all be easily derived. 
 
Let’s first start by assuming that 1 2z z≥ .  This is not required for the derivation, but 
will help to get a more general version of what we’re going to derive here.  So, let’s start 
with 1z  and do some work on it. 

 
1 1 2 2

1 2 2

1 2 2

Using triangle inequality

z z z z

z z z

z z z

= + −

≤ + + −

= + +

 

 
Now, rewrite things a little and we get, 
 1 2 1 2 0z z z z+ ≥ − ≥  (18) 
 
If we now assume that 1 2z z≤  we can go through a similar process as above except this 
time switch 1z  and 2z  and we get, 

 ( )1 2 2 1 1 2 0z z z z z z+ ≥ − = − − ≥  (19) 
 
Now, recalling the definition of absolute value we can combine (18) and (19) into the 
following variation of the triangle inequality. 



 1 2 1 2z z z z+ ≥ −  (20) 
 
Also, if we replace 2z  with 2z−  in (16) and (20) we arrive at two more variations of the 
triangle inequality. 
 1 2 1 2z z z z− ≤ +  (21) 
 
 1 2 1 2z z z z− ≥ −  (22) 
 
On occasion you’ll see (22) called the reverse triangle inequality. 
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 Polar & Exponential Form 

Most people are familiar with complex numbers in the form z a bi= + , however there are 
some alternate forms that are useful at times.  In this section we’ll look at both of those as 
well as a couple of nice facts that arise from them. 
 
Geometric Interpretation 
Before we get into the alternate forms we should first take a very brief look at a natural 
geometric interpretation to a complex numbers since this will lead us into our first 
alternate form. 
 
Consider the complex number z a bi= + .  We can think of this complex number as either 
the point  ( ),a b  in the standard Cartesian coordinate system or as the vector that starts at 

the origin and ends at the point ( ),a b .  An example of this is shown in the figure below. 

 
 
In this interpretation we call the x-axis the real axis and the y-axis the imaginary axis.  
We often call the xy-plane in this interpretation the complex plane. 
 
Note as well that we can now get a geometric interpretation of the modulus.  From the 
image above we can see that 2 2z a b= + is nothing more than the length of the vector 
that we’re using to represent the complex number z a bi= + .  This interpretation also 
tells us that the inequality 1 2z z<  means that 1z  is closer to the origin (in the complex 
plane) than 2z  is. 
 
Polar Form 
Let’s now take a look at the first alternate form for a complex number.  If we think of the 
non-zero complex number z a bi= +  as the point ( ),a b  in the xy-plane we also know that 

we can represent this point by the polar coordinates ( ),r θ , where r is the distance of the 
point from the origin and θ  is the angle, in radians, from the positive x-axis to the ray 
connecting the origin to the point. 
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When working with complex numbers we assume that r is positive and that θ  can be any 
of the possible (both positive and negative) angles that end at the ray.  Note that this 
means that there are literally an infinite number of choices for θ . 
 
We excluded 0z =  since θ  is not defined for the point (0,0).  We will therefore only 
consider the polar form of non-zero complex numbers. 
 
We have the following conversion formulas for converting the polar coordinates ( ),r θ  

into the corresponding Cartesian coordinates of the point, ( ),a b . 
 
 cos sina r b rθ θ= =  
 
If we substitute these into z a bi= +  and factor an r out we arrive at the polar form of 
the complex number, 
 ( )cos sinz r iθ θ= +  (1) 
 
Note as well that we also have the following formula from polar coordinates relating r to 
a and b. 
 2 2r a b= +  
but, the right side is nothing more than the definition of the modulus and so we see that, 
 r z=  (2) 
 
So, sometimes the polar form will be written as, 
 ( )cos sinz z iθ θ= +  (3) 
 
The angle θ  is called the argument of z and is denoted by, 
 arg zθ =  
The argument of z can be any of the infinite possible values of θ  each of which can be 
found by solving 

 tan b
a

θ =  (4) 
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and making sure that θ  is in the correct quadrant. 
 
Note as well that any two values of the argument will differ from each other by an integer 
multiple of 2π .  This makes sense when you consider the following.   
 
For a given complex number z pick any of the possible values of the argument, say θ .  If 
you now increase the value of θ , which is really just increasing the angle that the point 
makes with the positive x-axis, you are rotating the point about the origin in a counter-
clockwise manner.  Since it takes 2π  radians to make one complete revolution you will 
be back at your initial starting point when you reach 2θ π+  and so have a new value of 
the argument.  See the figure below. 

 
 

If you keep increasing the angle you will again be back at the starting point when you 
reach 4θ π+ , which is again a new value of the argument.  Continuing in this fashion we 
can see that every time we reach a new value of the argument we will simply be adding 
multiples of 2π  onto the original value of the argument. 
 
Likewise, if you start at θ  and decrease the angle you will be rotating the point about the 
origin in a clockwise manner and will return to your original starting point when you 
reach 2θ π− .  Continuing in this fashion and we can again see that each new value of the 
argument will be found by subtracting a multiple of 2π  from the original value of the 
argument. 
 
So we can see that if 1θ  and 2θ  are two values of arg z then for some integer k we will 
have, 
 1 2 2 kθ θ π− =  (5) 
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Note that we’ve also shown here that ( )cos sinz r iθ θ= +  is a parametric representation 
for a circle of radius r centered at the origin and that it will trace out a complete circle in 
a counter-clockwise direction as the angle increases from θ  to 2θ π+ . 
 
The principle value of the argument (sometimes called the principle argument) is the 
unique value of the argument that is in the range arg zπ π− < ≤  and is denoted by Arg z .  
Note that the inequalities at either end of the range tells that a negative real number will 
have a principle value of the argument of Arg z π= . 
 
Recalling that we noted above that any two values of the argument will differ from each 
other by a multiple of 2π  leads us to the following fact. 
 
 arg Arg 2 0, 1, 2,z z n nπ= + = ± ± …  (6) 
 
We should probably do a couple of quick numerical examples at this point before we 
move on to look the second alternate form of a complex number. 
 
Example 1  Write down the polar form of each of the following complex numbers. 

(a) 1 3z i= − +  
(b) 9z = −  
(c) 12z i=  

Solution 
(a) Let’s first get r. 
 1 3 2r z= = + =  
Now let’s find the argument of z.  This can be any angle that satisfies (4), but it’s usually 
easiest to find the principle value so we’ll find that one.  The principle value of the 
argument will be the value of θ  that is in the range π θ π− < ≤ , satisfies, 

 ( )13tan tan 3
1

θ θ −= ⇒ = −
−

 

and is in the second quadrant since that is the location the complex number in the 
complex plane. 
 
If you’re using a calculator to find the value of this inverse tangent make sure that you 

understand that your calculator will only return values in the range 
2 2
π πθ− < <  and so 

you may get the incorrect value.  Recall that if your calculator returns a value of 1θ  then 
the second value that will also satisfy the equation will be 2 1θ θ π= + .  So, if you’re 
using a calculator be careful.  You will need to compute both and the determine which 
falls into the correct quadrant to match the complex number we have because only one of 
them will be in the correct quadrant. 
 
In our case the two values are, 
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 1 2
2

3 3 3
π π πθ θ π= − = − + =  

The first one is in quadrant four and the second one is in quadrant two and so is the one 
that we’re after.  Therefore, the principle value of the argument is, 

2Arg
3

z π
=  

and all possible values of the argument are then 

 2arg 2 0, 1, 2,
3

z n nπ π= + = ± ± …  

 
Now, let’s actually do what we were originally asked to do.  Here is the polar form of 

1 3z i= − + . 

 2 22 cos sin
3 3

z iπ π    = +        
 

 
Now, for the sake of completeness we should acknowledge that there are many more 
equally valid polar forms for this complex number.  To get any of the other forms we just 
need to compute a different value of the argument by picking n.  Here are a couple of 
other possible polar forms. 

 

8 82 cos sin 1
3 3

16 162 cos sin 3
3 3

z i n

z i n

π π

π π

    = + =    
    

    = − + − = −    
    

 

 
(b) In this case we’ve already noted that the principle value of a negative real number is 
π  so we don’t need to compute that.  For completeness sake here are all possible values 
of the argument of any negative number. 
 ( )arg 2 1 2 0, 1, 2,z n n nπ π π= + = + = ± ± …  
 
Now, r is, 
 81 0 9r z= = + =  
The polar form (using the principle value) is, 
 ( ) ( )( )9 cos sinz iπ π= +  
 
Note that if we’d had a positive real number the principle value would be Arg 0z =  
 
(c) This another special case much like real numbers.  If we were to use (4) to find the 
argument we would run into problems since the imaginary part is zero and this would 
give division by zero.  However, all we need to do to get the argument is think about 
where this complex number is in the complex plane.  In the complex plane purely 
imaginary numbers are either on the positive y-axis or the negative y-axis depending on 
the sign of the imaginary part.   
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For our case the imaginary part is positive and so this complex number will be on the 
positive y-axis.  Therefore, the principle value and the general argument for this complex 
number is, 

 1Arg arg 2 2 0, 1, 2,
2 2 2

z z n n nπ π
π π  = = + = + = ± ± 

 
…  

 
Also, in this case r = 12 and so the polar form (again using the principle value) is, 

 12 cos sin
2 2

z iπ π    = +        
 

 
Exponential Form 
Now that we’ve discussed the polar form of a complex number we can introduce the 
second alternate form of a complex number.  First, we’ll need Euler’s formula, 
 cos sini iθ θ θ= +e  (7) 
 
With Euler’s formula we can rewrite the polar form of a complex number into its 
exponential form as follows. 
 iz r θ= e  
where arg zθ =  and so we can see that, much like the polar form, there are an infinite 
number of possible exponential forms for a given complex number.  Also, because any 
two arguments for a give complex number differ by an integer multiple of 2π  we will 
sometimes write the exponential form as, 

( )2 0, 1, 2,i nz r nθ π+= = ± ±e …  
where θ  is any value of the argument although it is more often than not the principle 
value of the argument. 
 
To get the value of r we can either use (3) to write the exponential form or we can take a 
more direct approach.  Let’s take the direct approach.  Take the modulus of both sides 
and then do a little simplification as follows, 
 2 2 2cos sin 0 cos sini iz r r r i r rθ θ θ θ θ θ= = = + = + + =e e  

and so we see that r z= . 
 
Note as well that because we can consider ( )cos sinz r iθ θ= +  as a parametric 
representation of a circle of radius r and the exponential form of a complex number is 
really another way of writing the polar form we can also consider iz r θ= e  a parametric 
representation of a circle of radius r. 
 
Now that we’ve got the exponential form of a complex number out of the way we can use 
this along with basic exponent properties to derive some nice facts about complex 
numbers and their arguments. 
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First, let’s start with the non-zero complex number iz r θ= e .  In the arithmetic section we 
gave a fairly complex formula for the multiplicative inverse, however, with the 
exponential form of the complex number we can get a much nicer formula for the 
multiplicative inverse. 

 ( ) ( ) ( )1 11 1 1 1 ii i iz r r r
r

θθ θ θ− −− − − −−= = = =e e e e  

Note that since r is a non-zero real number we know that 1 1r
r

− = .  So, putting this 

together the exponential form of the multiplicative inverse is, 

 ( )1 1 iz
r

θ− −= e  (8) 

and the polar form of the multiplicative inverse is, 

 ( ) ( )( )1 1 cos sinz i
r

θ θ− = − + −  (9) 

 
We can also get some nice formulas for the product or quotient of complex numbers.  
Given two complex numbers 1

1 1
iz r θ= e  and 2

2 2
iz r θ= e , where 1θ  is any value of 1arg z  

and 2θ  is any value of 2arg z , we have 

 ( )( ) ( )1 21 2
1 2 1 2 1 2

ii iz z r r r r θ θθ θ +
= =e e e  (10) 

 

 ( )1
1 2

2

1 1 1

2 22

i
i

i
z r r
z rr

θ
θ θ

θ
−

= =
e e
e

 (11) 

 
The polar forms for both of these are, 
 ( ) ( )( )1 2 1 2 1 2 1 2cos sinz z r r iθ θ θ θ= + + +  (12) 
 

 ( ) ( )( )1 1
1 2 1 2

2 2

cos sinz r i
z r

θ θ θ θ= − + −  (13) 

 
We can also use (10) and (11) to get some nice facts about the arguments of a product 
and a quotient of complex numbers.  Since 1θ  is any value of 1arg z  and 2θ  is any value 
of 2arg z  we can see that, 
 ( )1 2 1 2arg arg argz z z z= +  (14) 
 

 1
1 2

2

arg arg argz z z
z

 
= − 

 
 (15) 
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Note that (14) and (15) may or may not work if you use the principle value of the 
argument, Arg z.  For example, consider 1z i=  and 2 1z = − .  In this case we have 

1 2z z i= −  and the principle value of the argument for each is, 

 ( ) ( ) ( )Arg Arg 1 Arg
2 2

i iπ ππ= − = − = −  

However, 

 ( ) ( ) 3Arg Arg 1
2 2

i π π
+ − = ≠ −  

and so (14) doesn’t hold if we use the principle value of the argument.  Note however, if 
we use, 

 ( ) ( )arg arg 1
2

i π π= − =  

then, 

 ( ) ( ) 3arg arg 1
2

i π
+ − =  

is valid since 3
2
π  is a possible argument for –i, it just isn’t the principle value of the 

argument. 
 
As an interesting side note, (15) actually does work for this example if we use the 
principle arguments.  That won’t always happen, but it does in this case so be careful! 
 
We will close this section with a nice fact about the equality of two complex numbers 
that we will make heavy use of in the next section.  Suppose that we have two complex 
numbers given by their exponential forms, 1

1 1
iz r θ= e  and 2

2 2
iz r θ= e .  Also suppose that 

we know that 1 2z z= .  In this case we have, 

 1 2
1 2

i ir rθ θ=e e  
 
Then we will have 1 2z z=  if and only if, 
 ( )1 2 2 1and 2 for some integer  . . 0, 1, 2,r r k k i e kθ θ π= = + = ± ± …  (16) 
 
Note that the phrase “if and only if” is a fancy mathematical phrase that means that if 

1 2z z=  is true then so is (16) and likewise, if (16) is true then we’ll have 1 2z z= . 
 
This may seem like a silly fact, but we are going to use this in the next section to help us 
find the powers and roots of complex numbers. 
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 Powers and Roots 
In this section we’re going to take a look at a really nice way of quickly computing 
integer powers and roots of complex numbers. 
 
We’ll start with integer powers of iz r θ= e since they are easy enough.  If n is an integer 
then, 

 ( )nn ni i nz r rθ θ= =e e  (17) 
 
There really isn’t too much to do with powers other than working a quick example. 
 
Example 1  Compute ( )53 3i+ . 
 
Solution 
Of course we could just do this by multiplying the number out, but this would be time 
consuming and prone to mistakes.  Instead we can convert to exponential form and then 
use (17) to quickly get the answer. 
 
Here is the exponential form of 3 3i+ . 

 39 9 3 2 tan Arg
3 4

r z πθ= + = = ⇒ =  

 

 43 3 3 2
i

i
π

+ = e  
Note that we used the principle value of the argument for the exponential form, although 
we didn’t have to. 
 
Now, use (17) to quickly do the computation. 

 

( ) ( )55
5
43 3 3 2

5 5972 2 cos sin
4 4

2 2972 2
2 2

972 972

i
i

i

i

i

π

π π

+ =

    = +    
    

 
= − −  

 
= − −

e

 

 
So, there really isn’t too much to integer powers of a complex number. 
 
Note that if 1r =  then we have, 

 ( )nn i i nz θ θ= =e e  
and if we take the last two terms and convert to polar form we arrive at a formula that is 
called de Moivre’s formula. 
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 ( ) ( ) ( )cos sin cos sin 0, 1, 2,ni n i n nθ θ θ θ+ = + = ± ± …  
 
We now need to move onto computing roots of complex numbers.  We’ll start this off 
“simple” by finding the nth roots of unity.  The nth roots of unity for 2,3,n = …  are the 
distinct solutions to the equation, 
 1nz =  
 
Clearly (hopefully) 1z =  is one of the solutions.  We want to determine if there are any 
other solutions.  To do this we will use the fact from the previous sections that states that 

1 2z z=  if and only if  
 ( )1 2 2 1and 2 for some integer  . . 0, 1, 2,r r k k i e kθ θ π= = + = ± ± …  
 
So, let’s start by converting both sides of the equation to complex form and then 
computing the power on the left side.  Doing this gives, 

 ( ) ( ) ( )0 01 1
n ni ii i nr rθ θ= ⇒ =e e e e  

 
So, according to the fact these will be equal provided, 
 1 0 2 0, 1, 2,nr n k kθ π= = + = ± ± …  
 
Now, r is a positive integer (by assumption of the exponential/polar form) and so solving 
gives, 

 21 0, 1, 2,kr k
n
πθ= = = ± ± …  

 
The solutions to the equation are then, 

 2exp 0, 1, 2,kz i k
n
π = = ± ± 

 
…  

 
Recall from our discussion on the polar form (and hence the exponential form) that these 
points will lie on the circle of radius r.  So, our points will lie on the unit circle and they 

will be equally spaced on the unit circle at every 2
n
π  radians.  Note this also tells us that 

there n distinct roots corresponding to 0,1, 2, , 1k n= −…  since we will get back to where 
we started once we reach k n=  
 
Therefore there are n nth roots of unity and they are given by, 

 2 2 2exp cos sin 0,1, 2, , 1k k ki i k n
n n n
π π π     = + = −     

     
…  (18) 

 
There is a simpler notation that is often used to denote nth roots of unity.  First define, 

 2expn i
n
π

ω  =  
 

 (19) 
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then the nth roots of unity are, 

 2 2exp exp 0,1, 2, 1
k

k
n

ki i k n
n n
π π

ω
    = = = −        

…  

 
Or, more simply the nth roots of unity are, 
 2 11, , , , n

n n nω ω ω −…  (20) 
where nω  is defined in (19). 
 
Example 2  Compute the nth roots of unity for n = 2, 3, and 4. 
 
Solution 
We’ll start with n = 2. 

 2
2exp
2

ii ππ
ω  = = 

 
e  

This gives, 

 ( ) ( )
21 1 and

cos sin
1

i

i

πω

π π

= =

= +

= −

e
 

 
So, for n = 2 we have -1, and 1 as the nth roots of unity.  This should not be too surprising 
as all we were doing was solving the equation 
 2 1z =  
and we all know that -1 and 1 are the two solutions. 
 
While the result for n = 2 may not be that surprising that for n = 3 may be somewhat 
surprising.  In this case we are really solving 
 3 1z =  
and in the world of real numbers we know that the solution to this is z = 1.  However, 
from the work above we know that there are 3 nth roots of unity in this case.  The problem 
here is that the remaining two are complex solutions and so are usually not thought about 
when solving for real solution to this equation which is generally what we wanted up to 
this point. 
 
So, let’s go ahead and find the nth roots of unity for n = 3. 

 3
2exp
3

i π
ω  =  

 
 

This gives, 
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2
3 3

2 41 1 exp exp
3 3

2 2 4 4cos sin cos sin
3 3 3 3

1 3 1 3
2 2 2 2

i i

i i

i i

π πω ω

π π π π

   = = =   
   
       = + = +       
       

= − + = − −

 

I’ll leave it to you to check that if you cube the last two values you will in fact get 1. 
 
Finally, let’s go through n = 4.  We’ll do this one much quicker than the previous cases. 

4
2exp exp
4 2

i iπ π
ω    = =   

   
 

This gives, 

 
( )2 3

4 4 4
31 1 exp exp exp

2 2
1

i i i

i i

π πω ω π ω   = = = =   
   

= = − = −
 

 
Now, let’s move on to more general roots.  First let’s get some notation out of the way.  
We’ll define 1

0
nz  to be any number that will satisfy the equation 

 0
nz z=  (21) 

 To find the values of 1
0

nz  we’ll need to solve this equation and we can do that in the 
same way that we found the nth roots of unity.  So, if 0 0r z=  and 0 0arg zθ =  (note 0θ  can 
be any value of the argument, but we usually use the principle value) we have, 

 ( ) 0 0
0 0

n ni ii i nr r r rθ θθ θ= ⇒ =e e e e  
So, this tells us that, 

 0
0

2 0, 1, 2,n kr r k
n n

θ πθ= = + = ± ± …  

The distinct solutions to (21) are then, 

 0
0

2exp 0,1, 2, , 1n
k

ka r i k n
n n

θ π  = + = −  
  

…  (22) 

So, we can see that just as there were n nth roots of unity there are also n nth roots of 0z . 
 
Finally, we can again simplify the notation up a little.  If a is any of the nth roots of 0z  
then all the roots can be written as, 
 2 1, , , , , n

n n na a a aω ω ω −…  
where nω  is defined in (19). 
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Example 3  Compute all values of the following. 

(a) ( )
1
22i  

(b) ( )
1
33 i−  

Solution 
(a) The first thing to do is write down the exponential form of the complex number we’re 
taking the root of. 

 2 2exp
2

i i π =  
 

 

So, if we use 0 2
πθ =  we can use (22) to write down the roots. 

 2 exp 0,1
4ka i k kπ

π
  = + =    

 

Plugging in for k gives, 

 

0 1
52 exp 2 exp

4 4

5 52 cos sin 2 cos sin
4 4 4 4

1 1

a i a i

i i

i i

π π

π π π π

    = =        
          = + = +                    

= + = − −

 

 
I’ll leave it to you to check that if you square both of these will get 2i. 
 
(b) Here’s the exponential form of the number, 

 3 2exp
6

i i π  − = −    
 

Using (22) the roots are, 

 3 22 exp 0,1, 2
18 3k

ka i kπ π  = − + =    
 

Plugging in for k gives, 
3 3

0

3 3
1

3 3
2

2 exp 2 cos sin 1.24078 0.21878
18 18 18

11 11 112 exp 2 cos sin 0.43092 1.18394
18 18 18

23 23 232 exp 2 cos sin
18 18

a i i i

a i i i

a i i

π π π

π π π

π π

        = − = − + − = +                
      = = + = − +            

   = = +   
   

0.80986 0.96516
18

iπ   = − −    

 

As with the previous part I’ll leave it to you to check that if you cube each of these you 
will get 3 i− . 
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