TECHNIQUES FOR SOLVING DIFFERENTIAL EQUATIONS

Separable Equations		$\frac{dy}{dx} = g(x)f(y)$		
Step 1:	Separate x 's and y 's on different sides.	$\frac{1}{f(y)}dy = g(x)dx$		
Step 2:	Integrate both sides.	$\int \frac{1}{f(y)} dy = \int g(x) dx + C$		
Step 3:	Express y in terms of x where possible.	If $ y = h(x)$, then $y = \pm h(x)$.		
		If $y = \pm e^C h(x)$, then $y = A h(x)$ where A is any real number (including zero).		
Step 4:	Check that constant solutions $y = C$ where $f(C) = 0$ are not missed.			
First Or	der Linear Equations	y' + P(x)y = Q(x)		

	-	
Step 1:	Find integrating factor.	$I(x) = e^{\int P(x)dx}$
Step 2:	Write differential equation as	(I(x)y)' = I(x)Q(x)
Step 3:	Integrate both sides.	$I(x)y = \int I(x)Q(x)dx + C$
Step 4:	Divide both sides by $I(x)$	$y = \frac{1}{I(x)} \left(\int I(x)Q(x)dx + C \right)$

Remark: Be careful with the sign of P(x). For instance,

If $y' + \frac{1}{x}y = 1$, the integrating factor is $I(x) = e^{\int 1/x \, dx} = x$. If $y' - \frac{1}{x}y = 1$, the integrating factor is $I(x) = e^{\int -1/x \, dx} = \frac{1}{x}$.

Second	Order Linear Homogeneous Equations	ay'' + by' + cy = 0
Step 1:	Write down the auxiliary equation.	$ar^2 + br + c = 0$
Step 2:	Solve the auxiliary equation.	$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Step 3:	Depending on the roots:	
(i)	$b^2 - 4ac > 0$. Two real roots r_1, r_2 .	$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$
(ii)	$b^2 - 4ac = 0$. One real root $r = r_1 = r_2$.	$y = c_1 e^{rx} + c_2 x e^{rx}$
(iii)	$b^2 - 4ac < 0$. Two complex roots $\alpha \pm i\beta$.	$y = c_1 e^{\alpha x} \cos \beta x + c_2 e^{\alpha x} \sin \beta x$
(i) (ii)	$b^2 - 4ac > 0$. Two real roots r_1, r_2 . $b^2 - 4ac = 0$. One real root $r = r_1 = r_2$.	$y = c_1 e^{rx} + c_2 x e^{rx}$

Second (Second Order Linear Non-homogeneous Equations $ay'' + by' + cy = G(x)$					
Method	Method of Undetermined Coefficients					
Step 1:	Solve the complementary equation.	$ay_c'' + by_c' + cy_c = 0$				
		$y_c = c_1 y_1(x) + c_2 y_2(x)$				
Step 2:	Write down a trial solution:					
(i)	G(x) = P(x)	$y_p = Q(x)$				
(i)	$G(x) = P(x)e^{kx}$	$y_p = Q(x) e^{kx}$				
(i)	$G(x) = P(x)e^{kx}\cos mx$ or $P(x)e^{kx}\sin mx$	$y_p = Q(x) e^{kx} \cos mx + R(x) e^{kx} \sin mx$				
	Here, $P(x), Q(x)$ and $R(x)$ are polynomials of the same degree.					
	Multiply y_p by x (or x^2) if one of the terms in the sum is $y_1(x)$ or $y_2(x)$.					
Step 3:	Substitute y_p into the differential equation, group terms of the same form together, e.g. $x^n e^{kx} \cos mx$, $x^n e^{kx} \sin mx$ and solve for the unknown coefficients.	$ay_p'' + by_p' + cy_p = G(x)$				
Step 4:	Write down the general solution.	$y(x) = y_c(x) + y_p(x)$				
Second (Second Order Linear Non-homogeneous Equations $ay'' + by' + cy = G(x)$					
Method	of Variation of Parameters					
Step 1:	Solve the complementary equation.	$ay_c'' + by_c' + cy_c = 0$				
		$y_c = c_1 y_1 + c_2 y_2$				
Step 2:	The particular solution has the form:	$y_p = u_1 y_1 + u_2 y_2$				
	Write down the two conditions:	$u_1' y_1 + u_2' y_2 = 0$ $u_1' y_1' + u_2' y_2' = G(x)/a$				
	Solve the conditions for u'_1 and u'_2 .	$u_1' = \frac{G(x)y_2}{a(y_1'y_2 - y_2'y_1)} u_2' = \frac{G(x)y_1}{a(y_2'y_1 - y_1'y_2)}$				
Step 3:	Integrate u'_1, u'_2 to get u_1, u_2 .	$u_1 = \int u'_1 dx + c_1 \qquad u_2 = \int u'_2 dx + c_2$				
Step 4:	Write down the general solution.	$y = (\int u_1' dx + c_1) y_1 + (\int u_2' dx + c_2) y_2$				

APPLICATIONS OF DIFFERENTIAL EQUATIONS

ORTHOGON TRAJECTO		 Write k in te Differentiate This is the d Replace y' by 	of curves $y = f(k, x)$ erms of y and x. e, so k becomes 0. liff eqn for the curves. y -1/y'. This is the the orth trajectories.		MIXING PROBLEMS dy/dx = (rate in) - (rate out) y is amount of salt at time t. $(\text{rate in}) = (\text{vol in}) \times (\text{conc in})$ $(\text{rate out}) = \frac{\text{vol out}}{\text{vol at time t}} \times y$	
POPULATION k relative growth rate, K carrying capacity, P_0 initial populationMODELS						
Description		Differential Equation		Solution		Eq. Solutions
Natural Growth		dP		$P = P_0 e^{kt}$		P = 0
Logistic Model		$\frac{dP}{dt} = kP(1 - \frac{P}{K}), \ P(0) = P_0$		$P = \frac{K}{1 + A e^{-kt}}, \ A = \frac{K - P_0}{P_0}$		P = 0, K
I redator-r rey		$\frac{dR}{dt} = kR - aRW$ $\frac{dW}{dt} = -rW + bR$	W	Phase tra $\frac{dW}{dR} = \frac{-}{\mu}$	ajectories $\frac{rW + bRW}{kR - aRW}$	$(R, W) = (0, 0)$ $(R, W) = \left(\frac{r}{b}, \frac{k}{a}\right)$
SPRINGS & $mx'' + cx' +$ ELECTRIC x displacemeCIRCUITS dx/dt velocit m mass c damping co k spring cons $F(t)$ external			nent Q chargeity $dQ/dt = I$ current L inductanceconstant R resistancenstant (force/extension) $1/C$ elastance, C capacitance			
Description	Differ	ential Equation	Solution			
Simple Harmonic Motion mx'' + kx = 0		$\begin{aligned} x(t) &= c_1 \cos \omega t + c_1 \sin \omega t = A \cos(\omega t + \delta) \\ \text{frequency } \omega &= \sqrt{\frac{k}{m}}, \text{ period } T = \frac{2\pi}{\omega}, \text{ amplitude } A = \sqrt{c_1^2 + c_2^2} \\ \text{phase angle } \delta, \cos \delta &= \frac{c_1}{A}, \sin \delta = -\frac{c_2}{A} \end{aligned}$				
Damped Vibrations $mx'' + cx' + kx = 0$		$r = \frac{-c \pm \sqrt{c^2 - 4mk}}{2m}$ $c^2 - 4mk > 0 \text{ overdamping} \qquad x = c_1 e^{r_1 t} + c_2 e^{r_2 t}$ $c^2 - 4mk = 0 \text{ critical damping} \qquad x = c_1 e^{rt} + c_2 t e^{rt}$ $c^2 - 4mk < 0 \text{ underdamping} \qquad x = e^{\alpha t} (c_1 \cos \beta t + c_2 \sin \beta t)$				
+ mr + rr + rr + rr + rr			If $F(t)$ is periodic, then <i>resonance</i> occurs when the applied frequency ω_0 equals the natural frequency ω .			

9.1 Modeling with Differential Equations

- \star differential equation, order. solution, general solution.
- ★ equilibrium solution: a constant solution y = C. set y'' = y' = 0, y = C in diff eqn and solve for C.
- \star initial condition, initial value problem.

9.2 Direction Fields and Euler's Method

- \star direction field, solution curve.
- ★ autonomous differential equation y' = f(y). if y = g(x) is a solution, so is y = g(x + C). e.g. natural growth, logistic model
- $\circ\,$ Graphical method:
 - 1. draw direction field.
 - 2. draw solution curve.
- Numerical method: Euler's method, step size h. Solving y' = F(x, y), y(x₀) = y₀.
 1. Set x_n = x₀ + nh for n ≥ 1.
 2. Recursively, y_{n+1} = y_n + hF(x_n, y_n) for n ≥ 0.

9.3 Separable Equations

 \star separable equations, orthogonal trajectories, mixing problems (see formula sheet)

9.4 Population Models

- know how to derive solutions of natural growth/logistic model using separation of variables and partial fractions.
- * law of natural growth (see formula sheet) compare with exponential decay P' = -kPwhere k is negative, $P(t) = P_0 e^{-kt}$.

- ★ logistic differential equation (see formula sheet) case 1: $0 < P_0 < K$. *P* increases and approaches *K*. case 2: $P_0 > K$. *P* decreases and approaches *K*. know how to see this from the differential equation.
- \otimes natural growth with harvesting $P' = kP - c, P(0) = P_0$ $P(t) - \frac{c}{k} = (P_0 - \frac{c}{k})e^{kt}$ trick: subs $y = P - \frac{c}{k}$ to get natural growth model.
- \otimes logistic model with harvesting (see quiz 11) $P' = kP(1 - \frac{K}{P}) - c, P(0) = P_0$

two equilibrium solutions $P_1, P_2 = \frac{K}{2} \left(1 \pm \sqrt{1 - \frac{4c}{kK}} \right)$ case 1: $P_0 < P_1$. *P* approaches $-\infty$ case 2: $P_1 < P_0 < P_2$. *P* increases and approaches P_2 . case 3: $P_2 < P_0$. *P* decreases and approaches P_2 . trick: subs $y = P - P_1$ to get logistic model.

- \otimes Seasonal growth $P' = kP\cos(rt \phi), P = Ce^{(k/r)\sin(rt \phi)}$
- $\otimes\,$ Seasonal growth with harvesting $P'=kP\cos(rt-\phi)-c$
- $\otimes P' = kP(1 \frac{P}{K})(1 \frac{m}{P}), m$ extinction level.

9.5 First Order Linear Equations

- \star first order linear equation (see formula sheet)
- to get unique solution from general solution: initial value problem $y(0) = y_0$

9.6 Predator-Prey Systems

- \star predator prey equations (see formula sheet)
- \star phase plane, phase trajectory, phase portrait
- \star know how to derive, draw and compare phase trajectories and population graphs

$$\otimes \ \frac{dW}{dR} = \frac{-rW + bRW}{kR - aRW} \Longrightarrow \frac{R^r W^k}{e^{bR} e^{aW}} = C \ (\text{see S9.6Q7})$$

11.1 Second Order Linear Equations

- * second order linear equations P(x)y'' + Q(x)y' + R(x) = 0 homogeneous P(x)y'' + Q(x)y' + R(x) = G(x) nonhomogeneous
- \star linear combination, linearly independent solutions
- if differention equation is linear and homoegeneous, then linear combinations of solutions are solutions.
- P(x)y" + Q(x)y' + R(x) = G(x) to get unique solution from general solution:
 1. initial condition, initial value problem y(0) = y₀, y'(0) = y'₀ always has unique solution near x = 0 if P, Q, R, G continuous and P(0) ≠ 0
 2. boundary condition, boundary value problem y(0) = y₀, y(1) = y₁ may not have a solution
- \star second order linear homogeneous equation, auxiliary/characteristic equation (see formula sheet)

11.2 Nonhomogeneous Linear Equations

- * complimentary equation ay'' + by' + cy = 0complimentary solution $y_c(x)$ particular solution $y_p(x)$ general solution $y(x) = y_p(x) + y_c(x)$
- \star method of undetermined coefficients (see formula sheet)
- \star variation of parameters (see formula sheet)

11.3 Applications of Second Order Differential Equations

- ★ spring systems (see formula sheet) simple harmonic motion damped vibrations overdamping (returns to rest slowly) critical damping (returns to rest fastest) underdamping (oscillates before coming to rest) know how to draw graphs of above cases know how to check if graph cuts x-axis forced vibrations item[*] electric circuits (see formula sheet)
- \star steady state solution is behavior of solution as $t\to\infty$ see S17.3 example 3 note 1
- \star a function x(t) has period T if x(t+T) = x(t) for all t.

11.4 Series Solutions

- finds solutions near x = 0 because we are writing the solution as a power series with center x = 0.
- step 1: write $y = \sum_{n=0}^{\infty} c_n x^n$. step 2: differentiate to get y', y'' as power series. step 3: substitute into differential equation. collect terms. step 4: equate coefficients to get *recursion relations*. step 5: solve recursion relations for small n to find patterns. step 6: write down general solution. it will be in terms of certain coefficients e.g. c_0, c_1 , which act as arbitrary constants.
 - step 7: (optional) recognize terms in general solution as power series of well-known functions.