Separable Equations	$\frac{d y}{d x}=g(x) f(y)$	
Step 1:	Separate x 's and y 's on different sides.	$\frac{1}{f(y)} d y=g(x) d x$
Step 2:	Integrate both sides.	$\int \frac{1}{f(y)} d y=\int g(x) d x+C$
Step 3:	Express y in terms of x where possible.	If $\|y\|=h(x)$, then $y= \pm h(x)$. If $y= \pm e^{C} h(x)$, then $y=A h(x)$ where Step 4: Check that constant solutions $y=C$ where $f(C)=0$ are not missed.

$\left.\begin{array}{ll}\text { First Order Linear Equations } & y^{\prime}+P(x) y=Q(x) \\ \hline \text { Step 1: Find integrating factor. } & I(x)=e^{\int P(x) d x} \\ \text { Step 2: } & \text { Write differential equation as } \\ \text { Step 3: Integrate both sides. } & (I(x) y)^{\prime}=I(x) Q(x) \\ \text { Step 4: } & \text { Divide both sides by } I(x) \\ & y=\int I(x) Q(x) d x+C \\ I(x) \\ \hline\end{array} \int I(x) Q(x) d x+C\right)$

Remark: Be careful with the sign of $P(x)$. For instance,
If $y^{\prime}+\frac{1}{x} y=1$, the integrating factor is $I(x)=e^{\int 1 / x d x}=x$.
If $y^{\prime}-\frac{1}{x} y=1$, the integrating factor is $I(x)=e^{\int-1 / x d x}=\frac{1}{x}$.

Second Order Linear Homogeneous Equations

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Step 1: Write down the auxiliary equation.

$$
a r^{2}+b r+c=0
$$

Step 2: Solve the auxiliary equation.

$$
r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Step 3: Depending on the roots:
(i) $\quad b^{2}-4 a c>0$. Two real roots $r_{1}, r_{2} . \quad y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$
(ii) $\quad b^{2}-4 a c=0$. One real root $r=r_{1}=r_{2} . \quad y=c_{1} e^{r x}+c_{2} x e^{r x}$
(iii) $\quad b^{2}-4 a c<0$. Two complex roots $\alpha \pm i \beta . \quad y=c_{1} e^{\alpha x} \cos \beta x+c_{2} e^{\alpha x} \sin \beta x$

Second Order Linear Non-homogeneous Equations $\quad a y^{\prime \prime}+b y^{\prime}+c y=G(x)$

Method of Undetermined Coefficients

Step 1: Solve the complementary equation. $a y_{c}^{\prime \prime}+b y_{c}^{\prime}+c y_{c}=0$

$$
y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

Step 2: Write down a trial solution:
(i) $\quad G(x)=P(x)$

$$
y_{p}=Q(x)
$$

(i) $\quad G(x)=P(x) e^{k x}$
$y_{p}=Q(x) e^{k x}$
(i) $\quad G(x)=P(x) e^{k x} \cos m x$ or $P(x) e^{k x} \sin m x$
$y_{p}=Q(x) e^{k x} \cos m x+R(x) e^{k x} \sin m x$
Here, $P(x), Q(x)$ and $R(x)$ are polynomials of the same degree.
Multiply y_{p} by x (or x^{2}) if one of the terms in the sum is $y_{1}(x)$ or $y_{2}(x)$.
Step 3: Substitute y_{p} into the differential equation, $a y_{p}^{\prime \prime}+b y_{p}^{\prime}+c y_{p}=G(x)$ group terms of the same form together,
e.g. $x^{n} e^{k x} \cos m x, x^{n} e^{k x} \sin m x$
and solve for the unknown coefficients.
Step 4: Write down the general solution.

$$
y(x)=y_{c}(x)+y_{p}(x)
$$

APPLICATIONS OF DIFFERENTIAL EQUATIONS

ORTHOGONAL TRAJECTORIES	Given family of curves $y=f(k, x)$ 1. Write k in terms of y and x. 2. Differentiate, so k becomes 0 . This is the diff eqn for the curves. 3. Replace y^{\prime} by $-1 / y^{\prime}$. This is the diff eqn for the orth trajectories.	MIXING PROBLEMS $d y / d x=($ rate in $)-($ rate out $)$ y is amount of salt at time t. $($ rate in $)=($ vol in $) \times($ conc in $)$ $($ rate out $)=\frac{\text { vol out }}{\text { vol at time } \mathrm{t}} \times y$

POPULATION MODELS		k relative growth rate, K carrying capacity, P_{0} initial population	
Description	Differential Equation	Solution	Eq. Solutions
Natural Growth	$\frac{d P}{d t}=k P, P(0)=P_{0}$	$P=P_{0} e^{k t}$	$P=0$
Logistic Model	$\frac{d P}{d t}=k P\left(1-\frac{P}{K}\right), P(0)=P_{0}$	$P=\frac{K}{1+A e^{-k t}}, A=\frac{K-P_{0}}{P_{0}}$	$P=0, K$
Predator-Prey	$\frac{d R}{d t}=k R-a R W$ Systems$\frac{d W}{d t}=-r W+b R W$	Phase trajectories $\frac{d W}{d R}=\frac{-r W+b R W}{k R-a R W}$	$(R, W)=(0,0)$ $(R, W)=\left(\frac{r}{b}, \frac{k}{a}\right)$

SPRINGS ELECTRIC CIRCUITS	$\begin{aligned} & m x^{\prime \prime}+c x^{\prime}+k x=F(t) \\ & x \text { displacement } \\ & d x / d t \text { velocity } \\ & m \text { mass } \\ & c \text { damping constant } \\ & k \text { spring constant (force/extension) } \\ & F(t) \text { external force } \end{aligned}$	$+k x=F(t)$ $L Q^{\prime \prime}+R Q^{\prime}+Q / C=E(t)$ ment Q charge $d Q / d t=I$ current L inductance constant R resistance constant (force/extension) $1 / C$ elastance, C capacitance al force $E(t)$ electromotive force
Description	Differential Equation	Solution
Simple Harmonic Motion	$m x^{\prime \prime}+k x=0$	$x(t)=c_{1} \cos \omega t+c_{1} \sin \omega t=A \cos (\omega t+\delta)$ frequency $\omega=\sqrt{\frac{k}{m}}$, period $T=\frac{2 \pi}{\omega}$, amplitude $A=\sqrt{c_{1}^{2}+c_{2}^{2}}$ phase angle $\delta, \cos \delta=\frac{c_{1}}{A}, \sin \delta=-\frac{c_{2}}{A}$
Damped Vibrations	$m x^{\prime \prime}+c x^{\prime}+k x=0$	$\begin{array}{lc} r=\frac{-c \pm \sqrt{c^{2}-4 m k}}{2 m} \\ & \\ c^{2}-4 m k>0 \text { overdamping } & x=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} \\ c^{2}-4 m k=0 \text { critical damping } & x=c_{1} e^{r t}+c_{2} t e^{r t} \\ c^{2}-4 m k<0 \text { underdamping } & x=e^{\alpha t}\left(c_{1} \cos \beta t+c_{2} \sin \beta t\right) \end{array}$
Forced Vibrations	$m x^{\prime \prime}+c x^{\prime}+k x=F(t)$	If $F(t)$ is periodic, then resonance occurs when the applied frequency ω_{0} equals the natural frequency ω.

KEY

9.1 Modeling with Differential Equations

* differential equation, order. solution, general solution.
\star equilibrium solution: a constant solution $y=C$. set $y^{\prime \prime}=y^{\prime}=0, y=C$ in diff eqn and solve for C.
* initial condition, initial value problem.

9.2 Direction Fields and Euler's Method

\star direction field, solution curve.
\star autonomous differential equation $y^{\prime}=f(y)$. if $y=g(x)$ is a solution, so is $y=g(x+C)$. e.g. natural growth, logistic model

- Graphical method:

1. draw direction field.
2. draw solution curve.

- Numerical method: Euler's method, step size h.

Solving $y^{\prime}=F(x, y), y\left(x_{0}\right)=y_{0}$.

1. Set $x_{n}=x_{0}+n h$ for $n \geq 1$.
2. Recursively, $y_{n+1}=y_{n}+h F\left(x_{n}, y_{n}\right)$ for $n \geq 0$.

9.3 Separable Equations

\star separable equations, orthogonal trajectories, mixing problems (see formula sheet)

9.4 Population Models

- know how to derive solutions of natural growth/logistic model using separation of variables and partial fractions.
* law of natural growth (see formula sheet) compare with exponential decay $P^{\prime}=-k P$ where k is negative, $P(t)=P_{0} e^{-k t}$.
* logistic differential equation (see formula sheet)
case 1: $0<P_{0}<K$. P increases and approaches K.
case 2: $P_{0}>K . P$ decreases and approaches K.
know how to see this from the differential equation.
\otimes natural growth with harvesting
$P^{\prime}=k P-c, P(0)=P_{0}$
$P(t)-\frac{c}{k}=\left(P_{0}-\frac{c}{k}\right) e^{k t}$
trick: subs $y=P-\frac{c}{k}$ to get natural growth model.
\otimes logistic model with harvesting (see quiz 11)

$$
P^{\prime}=k P\left(1-\frac{K}{P}\right)-c, P(0)=P_{0}
$$

two equilibrium solutions $P_{1}, P_{2}=\frac{K}{2}\left(1 \pm \sqrt{1-\frac{4 c}{k K}}\right)$
case 1: $P_{0}<P_{1}$. P approaches $-\infty$
case 2: $P_{1}<P_{0}<P_{2}$. P increases and approaches P_{2}.
case 3: $P_{2}<P_{0}$. P decreases and approaches P_{2}.
trick: subs $y=P-P_{1}$ to get logistic model.
\otimes Seasonal growth $P^{\prime}=k P \cos (r t-\phi), P=C e^{(k / r) \sin (r t-\phi)}$
\otimes Seasonal growth with harvesting $P^{\prime}=k P \cos (r t-\phi)-c$
$\otimes P^{\prime}=k P\left(1-\frac{P}{K}\right)\left(1-\frac{m}{P}\right), m$ extinction level.

9.5 First Order Linear Equations

* first order linear equation (see formula sheet)
- to get unique solution from general solution: initial value problem $y(0)=y_{0}$

9.6 Predator-Prey Systems

* predator prey equations (see formula sheet)
* phase plane, phase trajectory, phase portrait
* know how to derive, draw and compare phase trajectories and population graphs
$\otimes \frac{d W}{d R}=\frac{-r W+b R W}{k R-a R W} \Longrightarrow \frac{R^{r} W^{k}}{e^{b R} e^{a W}}=C($ see S9.6Q7)

11.1 Second Order Linear Equations

\star second order linear equations
$P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x)=0$ homogeneous
$P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x)=G(x)$ nonhomogeneous
\star linear combination, linearly independent solutions

- if differention equation is linear and homoegeneous, then linear combinations of solutions are solutions.
- $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x)=G(x)$
to get unique solution from general solution:

1. initial condition, initial value problem
$y(0)=y_{0}, y^{\prime}(0)=y_{0}^{\prime}$
always has unique solution near $x=0$
if P, Q, R, G continuous and $P(0) \neq 0$
2. boundary condition, boundary value problem
$y(0)=y_{0}, y(1)=y_{1}$
may not have a solution

* second order linear homogeneous equation, auxiliary/characteristic equation (see formula sheet)

11.2 Nonhomogeneous Linear Equations

\star complimentary equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ complimentary solution $y_{c}(x)$ particular solution $y_{p}(x)$ general solution $y(x)=y_{p}(x)+y_{c}(x)$
\star method of undetermined coefficients (see formula sheet)
\star variation of parameters (see formula sheet)

11.3 Applications of Second Order Differential Equations

* spring systems (see formula sheet)
simple harmonic motion
damped vibrations
overdamping (returns to rest slowly)
critical damping (returns to rest fastest)
underdamping (oscillates before coming to rest)
know how to draw graphs of above cases
know how to check if graph cuts x-axis
forced vibrations item[$[\star$ electric circuits (see formula sheet)
* steady state solution is behavior of solution as $t \rightarrow \infty$ see S17.3 example 3 note 1
\star a function $x(t)$ has period T if $x(t+T)=x(t)$ for all t.

11.4 Series Solutions

- finds solutions near $x=0$ because we are writing the solution as a power series with center $x=0$.
- step 1: write $y=\sum_{n=0}^{\infty} c_{n} x^{n}$.
step 2: differentiate to get $y^{\prime}, y^{\prime \prime}$ as power series.
step 3: substitute into differential equation. collect terms.
step 4: equate coefficients to get recursion relations.
step 5: solve recursion relations for small n to find patterns.
step 6: write down general solution.
it will be in terms of certain coefficients
e.g. c_{0}, c_{1}, which act as arbitrary constants.
step 7: (optional) recognize terms in general solution as power series of well-known functions.

