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Review: nonlinear systems and stability

Linearization

Definition. Let F ,G be continuously differentiable, and (a,b) a critical
point of the system:

x ′ = F (x , y), y ′ = G(x , y).

The linearization at (a,b) is the system of linear equations

u′ = Fx(a,b)u + Fy (a,b)v
v ′ = Gx(a,b)u + Gy (a,b)v ,

In matrix notation, the linearization is

u′ = J(a,b)u where J(a,b) =

[
Fx(a,b) Fy (a,b)
Gx(a,b) Gy (a,b)

]
and has a critical point at the origin.
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Review: nonlinear systems and stability

Key theorem for linearization

Theorem
Suppose F ,G are continuously differentiable, and (a,b) is a critical
point (so, F (a,b) = G(a,b) = 0) where det(J(a,b)) 6= 0.

If the eigenvalues of J(a,b) are distinct and not imaginary, then the
trajectories to the nonlinear system near (a,b)

x ′ = F (x , y), y ′ = G(x , y)

look like slightly distorted versions of the trajectories to the
linearization near (0,0)

u′ = J(a,b)u

That is, the critical point (a,b) of the nonlinear system has the same stability
and type as the critical point (0,0) in the linearization.
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Review: nonlinear systems and stability

Computing eigenvalues of 2× 2 matrices

The characteristic polynomial for the real-valued matrix

A =

[
a b
c d

]
is λ2 − tr(A)λ+ det(A) where

tr(A) = a + d and det(A) = ad − bc.

The eigenvalues are

tr(A)

2
± 1

2

√
tr(A)2 − 4 det(A).

Kenneth Harris (Math 216) Math 216 Differential Equations November 14, 2008 5 / 1



Review: nonlinear systems and stability

Summary
Distribution of critical points in the Trace-Determinant plane.

A =

[
a b
c d

]
, T = tr(A) = a + d , D = det(A) = ad − bc.

Sensitive areas: Places where type of critical point sensitive to perturbations.
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Logistic Population models

Logistic population model

Logistic growth. Recall the logistic population model for one species:

x ′ = βx − δx2 β, δ > 0,

where the birth rate is β and the death rate is δx .

Critical points. 0, β
δ are the critical points,

0 is a source and β
δ is a sink.

Analysis. With no further interactions, the population will approach the
stable population β

δ . (See section 2.1).
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Logistic Population models

General logistic population model with interaction

Consider two population x(t), y(t) which interact.
Separate. Each population is modeled by the logistic equation:

dx
dt

= a1x − b1x2

dy
dt

= a2y − b2y2

where a1,a2,b1,b2 > 0.

Interaction is proportional to the likelihood of a chance encounter, xy :

dx
dt

= a1x − b1x2 − c1xy

dy
dt

= a2y − b2y2 − c2xy

where c1, c2 are nonzero real values.
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Logistic Population models

Competition model with logistic growth

Competition Model. c1, c2 > 0 in the interaction model with logistic
growth:

dx
dt

= a1x − b1x2 − c1xy

dy
dt

= a2y − b2y2 − c2xy

Explanation. The two populations x(t) and y(t) are separately logistic
populations (when no interaction occurs), but interaction hurts each
population. They are in competition with each other.
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Logistic Population models

Logistic population model

Cooperation Model. c1, c2 < 0 in the interaction model with logistic
growth:

dx
dt

= a1x − b1x2 − c1xy

dy
dt

= a2y − b2y2 − c2xy

Explanation. The two populations x(t) and y(t) are separately logistic
populations (when no interaction occurs), but interaction helps each
population.
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Logistic Population models

Logistic population model

Predator-Prey Model. c2 < 0 < c1 in the interaction model with
logistic growth:

dx
dt

= a1x − b1x2 − c1xy

dy
dt

= a2y − b2y2 − c2xy

Explanation. c2 < 0 < c1. The two populations x(t) and y(t) are
separately logistic populations (when no interaction occurs), but the
interaction is one of predation.

x(t) is hurt by the interaction, and is the prey population.
y(t) is helped by the interaction, and is the predator population.
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Example: Cooperating species

Example of logistic cooperation model

Equation. Consider the cooperation model for species x , y :

dx
dt

= 30x − 3x2 + xy = x(30− 3x + y)

dy
dt

= 60y − 3y2 + 4xy = y(60− 3y + 4x)

Critical points. (0,0), (0,20), (10,0), (30,60).

Jacobian.

J(x , y) =

[
30− 6x + y x

4y 60− 6y + 4x

]
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Example: Cooperating species

Qualitative properties of example

Jacobian. Critical point: (0,0). The stable solution x ≡ 0, y ≡ 0 is one
where both populations are extinct.

J(x , y) =

[
30− 6x + y x

4y 60− 6y + 4x

]
J(0,0) =

[
30 0
0 60

]
Eigenvalues. At (0,0): λ = 30,60

Analysis. (0,0) is a nodal source in the linearization; so it is a nodal
source in the nonlinear system.
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Example: Cooperating species

Qualitative properties of example

Jacobian. Critical point: (0,20), (10,0). The stable solutions where
one of the species is extinct.

J(x , y) =

[
30− 6x + y x

4y 60− 6y + 4x

]
J(0,20) =

[
50 0
80 −60

]
J(10,0) =

[
−30 10

0 100

]

Eigenvalues. At (0,20): λ = 50,−60, At (10,0): λ = −30,100

Analysis. Both (0,20) and (10,0) are saddlepoints (all trajectories are
repulsed except those where one population is extinct) in the
linearization; so it is a saddlepoint in the nonlinear system.
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Example: Cooperating species

Qualitative properties of example

Jacobian. Critical point: (30,60). The only stable solution where the
populations coexist: x ≡ 30, y ≡ 60.

J(x , y) =

[
30− 6x + y x

4y 60− 6y + 4x

]
J(30,60) =

[
−90 30
240 −180

]
We can determine stability by computing the trace (T ) and determinant
(D):

T = −90− 180 = −270 D = (−90)(−180)− (30)(240) = 9000 T 2 − 4D = 36900

Since discriminant is positive (T 2 − 4D > 0), T < 0 and D > 0, the
eigenvalues are real and negative.

Analysis. (30,60) is a nodal sink in the linearization; so it is a nodal
sink in the nonlinear system.
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Example: Cooperating species

Analysis

Separately the populations, without interaction, would tend to logistic
growth.

x(t)→ 10 as t →∞
y(t)→ 20 as t →∞

Interaction. Both populations are helped by the interaction
x(t)→ 30 as t →∞
y(t)→ 60 as t →∞
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Example: Cooperating species

Direction field

Direction field. Trajectories are drawn to (30,60).

x ’ = 30 x − 3 x2 + x y  
y ’ = 60 y − 3 y2 + 4 x y
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Example: logistic predator-prey model

Example of logistic predator-prey model

Equation. Consider the logistic predator(y )-prey(x) model for two
species:

dx
dt

= 30x − 2x2 − xy = x(30− 2x − y)

dy
dt

= 20y − 4y2 + 2xy = y(20− 4y + 2x)

Critical points. (0,0), (0,5), (15,0), (10,10).

Jacobian.

J(x , y) =

[
30− 4x − y −x

2y 20− 8y + 2x

]
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Example: logistic predator-prey model

Qualitative properties of example

Jacobian. Critical point: (0,0). The stable solution x ≡ 0, y ≡ 0 is one
where both populations are extinct.

J(x , y) =

[
30− 4x − y −x

2y 20− 8y + 2x

]
J(0,0) =

[
30 0
20 0

]
Eigenvalues. At (0,0): λ = 30,20

Analysis. (0,0) is a nodal source in the linearization; so it is a nodal
source in the nonlinear system.
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Example: logistic predator-prey model

Qualitative properties of example

Jacobian. Critical point: (0,5), (15,0). The stable solutions where one
of the species is extinct.

J(x , y) =

[
30− 4x − y −x

2y 20− 8y + 2x

]
J(0,5) =

[
25 0
10 −20

]
J(15,0) =

[
−30 −15

0 110

]

Eigenvalues. At (0,5): λ = 25,−20, At (15,0): λ = −30,110

Analysis. Both (0,5) and (15,0) are saddlepoints (all trajectories are
repulsed except those where one population is extinct) in the
linearization; so it is a saddlepoint in the nonlinear system.
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Example: logistic predator-prey model

Qualitative properties of example

Jacobian. Critical point: (10,10). The only stable solution where the
populations coexist: x ≡ 10, y ≡ 10.

J(x , y) =

[
30− 4x − y −x

2y 20− 8y + 2x

]
J(10,10) =

[
−20 −10
20 −40

]
We can determine stability by computing the trace (T ) and determinant
(D):

T = −20− 40 = −60 D = (−20)(−40)− (−10)(20) = 1000 T 2 − 4D = −400

Since discriminant is negative (T 2 − 4D < 0) and T < 0, the
eigenvalues are complex with negative real component.

Analysis. (10,10) is a spiral sink in the linearization; so it is a spiral
sink in the nonlinear system.
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Example: logistic predator-prey model

Analysis

Separately the populations, without interaction, would tend to logistic
growth.

x(t)→ 15 as t →∞
y(t)→ 5 as t →∞

Interaction. Predators (y ) are helped and prey (x) are hurt by the
interaction

x(t)→ 10 as t →∞
y(t)→ 10 as t →∞
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Example: logistic predator-prey model

Direction field

Direction field. Trajectories are drawn to (10,10).

x ’ = 30 x − 2 x2 − x y  
y ’ = 20 y − 4 y2 + 2 x y
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General procedure for sketching trajectories of non-linear systems

Method: Sketching trajectories

Sketching (in a qualitative way) solution curves for autonomous
systems:

x ′ = F (x , y), y ′ = G(x , y).

Step 1. Find all critical points (a,b) where F (a,b) = G(a,b) = 0.

Step 2. For each critical point (a,b), compute the linearization matrix[
Fx(a,b) Fy (a,b)
Gx(a,b) Gy (a,b)

]
and verify it is invertible.

Step 3. Determine the type and sign of the eigenvalues.
If real: are they distinct? what are the signs?
If complex: what is the sign of the real component?

Note: it is not necessary to determine the actual values of the eigenvalues.
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General procedure for sketching trajectories of non-linear systems

Method: Sketching trajectories

If the eigenvalues are distinct and non-imaginary then you can
continue to Step 4. Otherwise, this is a borderline case, so the
subsequent steps do not apply.

Step 4. Determine the stability and type of the critical point based on
the type and sign of the eigenvalues in Step 3. We have either a spiral
point, saddlepoint, or improper node in the linearization, and so in the
nonautonomous system.

Step 5. In the xy -plane, mark the critical points. Around each, sketch
the trajectories of the linearization, including the direction of motion.

Step 6. Sketch in some other trajectories to fill out the picture, making
them compatible with the behavior of trajectories around critical points.
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General procedure for sketching trajectories of non-linear systems

Borderline cases

The borderline cases occur when the linearization has imaginary
eigenvalues, or one eigenvalue.

1 Imaginary eigenvalue: linearization has a center at origin;
autonomous system could have a spiral sink or a spiral source.

2 One eigenvalue: linearization has a proper node (a star point) or
an improper node. The autonomous system has the same stability
properties, but could be a saddlepoint, sink node or source node.

Analysis. In a borderline case you generally must result to numerical
computation. Sometimes you can provide an explicit or implicit solution
to the first-order equation:

dy
dx

=
F (x , y)

G(x , y)
.
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Nonlogistic predator-prey model

Simple predator-prey model

General Model. We can look at alternative models by loosening the
restriction that a1,a2,b1,b2 are postive in

dx
dt

= a1x − b1x2 − c1xy

dy
dt

= a2y − b2y2 − c2xy .

For example, when b1 = b2 = 0, we have a natural growth model for
the population.

x(t) = ea1t without interaction,
y(t) = ea2t without interaction.
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Nonlogistic predator-prey model

Simple predator-prey model

Lotka-Volterra equations. This predator-prey model with natural
growth was first investigated in the mid-twenties.

dx
dt

= a1x − c1xy = x(a1 − c1y) a1, c1 ≥ 0

dy
dt

= −a2y + c2xy = −y(a2 − c2x) a2, c2 ≥ 0

Assumptions.
1 Prey (x(t)) has an unlimited food supply and would grow at the

natural growth rate x ′ = a1x unless subject to predation.
2 Predator (y(t)) has no other food source than x(t), so would

starve at the natural growth rate y ′ = −a2y unless prey present.
3 Rate of predation upon the prey is proportional to the rate at which

the predators and the prey meet (xy ). The interaction leads to
Decline in prey population −c1xy ,
Increase in predator population c2xy .
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Nonlogistic predator-prey model

Example of Lotka-Volterra equation

Equation.

dx
dt

= 4x − xy = x(4− y)

dy
dt

= −16y + 2xy = −y(16− 2x)

Critical points. (0,0), (8,4).
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Nonlogistic predator-prey model

Qualitative properties of example

dx
dt

= 4x − xy = x(4− y)

dy
dt

= −16y + 2xy = −y(16− 2x)

Jacobian. Critical point: (0,0). The stable solution x ≡ 0, y ≡ 0 is one
where both populations go extinct.

J(x , y) =

[
4− y −x

2y −16 + 2x

]
J(−1,1) =

[
4 0
0 −16

]
Eigenvalues. At (0,0): λ = 4,−16

Analysis. (0,0) is a unstable saddlepoint in the linearization; so it is
an unstable saddlepoint in the autonomous system.
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Nonlogistic predator-prey model

Qualitative properties of example

dx
dt

= 4x − xy = x(4− y)

dy
dt

= −16y + 2xy = −y(16− 2x)

Jacobian. Critical point: (8,4). The stable solution x ≡ 8, y ≡ 4 is one
where both populations coexist permanently.

J(x , y) =

[
4− y −x

2y −16 + 2x

]
J(8,4) =

[
0 −8
8 0

]
Eigenvalues. At (8,4): λ = ±8i

Analysis. (8,4) is a stable center in the linearization; we can draw no
conclusions about stability in the autonomous system:
it could be a stable center, stable spiral sink or unstable spiral source.
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Nonlogistic predator-prey model

Finding implicit solutions

Since (8,4) is a center, we cannot determine the stability of

dx
dt

= 4x − xy = x(4− y)

dy
dt

= −16y + 2xy = −y(16− 2x)

without looking at solutions.
By the Chain rule

dy
dx

=
dy
dt
dx
dt

=
−y(16− 2x)

x(4− y)

We want solutions x , y to this ordinary first order equation.
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Nonlogistic predator-prey model

Finding implicit solutions

Solve.
dy
dx

=
−y(16− 2x)

x(4− y)

Answer. Use separation of variables:

y − 4
y

dy =
16− 2x

x
dx

So, an implicit solution for x , y is given (for each constant C) by

y − 4 ln y + 2x − 16 ln x = C.

We can determine C from an initial value x(0), y(0) (population at t = 0).
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Nonlogistic predator-prey model

Three dimensional plot

Implicit plot of y − 4 ln y + 2x − 16 ln x . Solutions are planes z = C.
Here: z = 9.139 corresponding to x(0) = 8, y(0) = 20.
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Nonlogistic predator-prey model

Three trajectories

Three trajectories with initial values: (9,6), (8,20), (24,4).
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Nonlogistic predator-prey model

Direction field

Direction field. I had to change the solver for pplane to Runge-Kutta and
step size to 0.005 to get accurate renderings of trajectories.

x ’ = 4 x − x y     
y ’ = − 16 y + 2 x y
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Nonlogistic predator-prey model

Solution through (9, 6)

Solution trajectories for x(t), y(t) for initial populations: x(0) = 9, y(0) = 6.
Generated using Runge-Kutta approximation, rk2.m.
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Nonlogistic predator-prey model

Solution through (8, 20)

Solution trajectories for x(t), y(t) for initial populations: x(0) = 8, y(0) = 20.
Generated using Runge-Kutta approximation, rk2.m.
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Nonlogistic predator-prey model

Solution through (24, 4)

Solution trajectories for x(t), y(t) for initial populations: x(0) = 20, y(0) = 4.
Generated using Runge-Kutta approximation, rk2.m.
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Example: logistic predator-prey model II

Example of logistic predator-prey model

Equation. Consider the logistic predator(y )-prey(x) model for two
species:

dx
dt

= 30x − 2x2 − xy = x(30− 2x − y)

dy
dt

= 80y − 4y2 + 2xy = y(80− 4y + 2x)

Critical points. (0,0), (0,20), (15,0), (4,22).

Jacobian.

J(x , y) =

[
30− 4x − y −x

2y 80− 8y + 2x

]
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Example: logistic predator-prey model II

Qualitative properties of example

Jacobian. Critical point: (0,0). The stable solution x ≡ 0, y ≡ 0 is one
where both populations are extinct.

J(x , y) =

[
30− 4x − y −x

2y 80− 8y + 2x

]
J(0,0) =

[
30 0
80 0

]
Eigenvalues. At (0,0): λ = 30,80

Analysis. (0,0) is a nodal source in the linearization; so it is a nodal
source in the nonlinear system.
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Example: logistic predator-prey model II

Qualitative properties of example

Jacobian. Critical point: (0,20), (15,0). The stable solutions where
one of the species is extinct.

J(x , y) =

[
30− 4x − y −x

2y 80− 8y + 2x

]
J(0,20) =

[
10 0
40 −80

]
J(15,0) =

[
−30 −15

0 110

]

Eigenvalues. At (0,20): λ = 10,−80, At (15,0): λ = −30,110

Analysis. Both (0,20) and (15,0) are saddlepoints (all trajectories are
repulsed except those where one population is extinct) in the
linearization; so it is a saddlepoint in the nonlinear system.
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Example: logistic predator-prey model II

Qualitative properties of example

Jacobian. Critical point: (4,22). The only stable solution where the
populations coexist: x ≡ 4, y ≡ 22.

J(x , y) =

[
30− 4x − y −x

2y 80− 8y + 2x

]
J(4,22) =

[
−8 −4
44 −88

]
We can determine stability by computing the trace (T ) and determinant
(D):

T = −8− 88 = −96 D = (−8)(−88)− (−4)(44) = 880 T 2 − 4D = 5696

Since discriminant is positive (T 2 − 4D > 0), T < 0 and D > 0, the
eigenvalues are real and negative.

Analysis. (4,22) is a nodal sink in the linearization; so it is a nodal
sink in the nonlinear system.
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Example: logistic predator-prey model II

Analysis

Separately the populations, without interaction, would tend to logistic
growth.

x(t)→ 15 as t →∞
y(t)→ 20 as t →∞

Interaction. Predators (y ) are helped and prey (x) are hurt by the
interaction

x(t)→ 4 as t →∞
y(t)→ 22 as t →∞
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Example: logistic predator-prey model II

Direction field

Direction field. Trajectories are drawn to (4,22).

x ’ = 30 x − 2 x2 − x y  
y ’ = 80 y − 4 y2 + 2 x y
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Example: Competing species

Example of logistic competition model

Equation. Consider the competition model for species x , y :

dx
dt

= 60x − 3x2 − 4xy = x(60− 3x − 4y)

dy
dt

= 42y − 3y2 − 2xy = y(42− 3y − 2x)

Critical points. (0,0), (0,14), (20,0), (12,6).

Jacobian.

J(x , y) =

[
60− 6x − 4y −4x
−2y 42− 6y − 2x

]
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Example: Competing species

Qualitative properties of example

Jacobian. Critical point: (0,0). The stable solution x ≡ 0, y ≡ 0 is one
where both populations are extinct.

J(x , y) =

[
60− 6x − 4y −4x
−2y 42− 6y − 2x

]
J(0,0) =

[
60 0
42 0

]
Eigenvalues. At (0,0): λ = 60,42

Analysis. (0,0) is a nodal source in the linearization; so it is a nodal
source in the nonlinear system.
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Example: Competing species

Qualitative properties of example

Jacobian. Critical point: (0,14), (20,0). The stable solutions where
one of the species is extinct.

J(x , y) =

[
60− 6x − 4y −4x
−2y 42− 6y − 2x

]
J(0,14) =

[
4 0
−28 0− 42

]
J(20,0) =

[
−20 −80

0 2

]

Eigenvalues. At (0,14): λ = 4,−42, At (20,0): λ = −20,2

Analysis. Both (0,14) and (20,0) are saddlepoints (all trajectories are
repulsed except those where one population is extinct) in the
linearization; so it is a saddlepoint in the nonlinear system.
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Example: Competing species

Qualitative properties of example

Jacobian. Critical point: (12,6). The only stable solution where the
populations coexist: x ≡ 12, y ≡ 6.

J(x , y) =

[
60− 6x − 4y −4x
−2y 42− 6y − 2x

]
J(12,6) =

[
−36 −48
−12 −18

]
We can determine stability by computing the trace (T ) and determinant
(D):

T = −36− 18 = −54 D = (−36)(−18)− (−12)(−48) = 72 T 2 − 4D = 2628

Since discriminant is positive (T 2 − 4D > 0), T < 0 and D > 0, the
eigenvalues are real and negative.

Analysis. (12,6) is a nodal sink in the linearization; so it is a nodal
sink in the nonlinear system.
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Example: Competing species

Analysis

Separately the populations, without interaction, would tend to logistic
growth.

x(t)→ 20 as t →∞
y(t)→ 14 as t →∞

Interaction. Both populations are hurt by the interaction
x(t)→ 12 as t →∞
y(t)→ 6 as t →∞
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Example: Competing species

Direction field

Direction field. Trajectories are drawn to (12,6).

x ’ = 60 x − 3 x2 − 4 x y
y ’ = 42 y − 3 y2 − 2 x y
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