Harold's Vectors Cheat Sheet

5 December 2022

Definitions

Term	Formula	Example
Vector Notation	А, а	Bold letter
	<i>ā</i> , ā	Arrow on top
Component Notation	$\boldsymbol{a} = \vec{a} = a_x \hat{\boldsymbol{i}} + a_y \hat{\boldsymbol{j}} + a_z \hat{\boldsymbol{k}}$	$\boldsymbol{a} = 3\hat{\boldsymbol{\imath}} + 4\hat{\boldsymbol{j}} + 5\hat{\boldsymbol{k}}$
	$\boldsymbol{a}=\langle a_x,a_y,a_z angle$	$a = \langle 3, 4, 5 \rangle$
	$a = r \angle \theta$	a = 5 ∠ 53.13° (2D)
	ν ν ν ν ν zD	z a k a z a z a y
		3D
Vectors Used in Examples	$a = a_x \hat{\imath} + a_y \hat{\jmath} + a_z k$ $b = b_x \hat{\imath} + b_y \hat{\jmath} + b_z \hat{k}$ 2D: set $a_z = b_z = 0$	$a = 3\hat{\imath} + 4\hat{\jmath} + 5\hat{k}$ $b = 6\hat{\imath} - 7\hat{\jmath} - 8\hat{k}$
Magnitude	$\ \boldsymbol{a}\ = \sqrt{a_x^2 + a_y^2 + a_z^2}$	$\ \boldsymbol{a}\ = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$
	Can also use a . Length of vector, but with no direction (scalar). Similar to a hypotenuse. Think multi-dimensional	magnitude head
	Pythagorean Theorem.	tail
Direction	Divided into dimensional components.	A scalar with a direction is a vector. Example: speed vs. velocity
	$\tan\theta = \frac{a_y}{a_x}$	$\theta = \tan^{-1}\left(\frac{a_y}{a_x}\right) = \tan^{-1}\left(\frac{4}{3}\right) \cong 53.13^{\circ}$
Unit Vector	$\hat{\mathbf{i}} = x - axis = \langle 1, 0, 0 \rangle$ $\hat{\mathbf{j}} = y - axis = \langle 0, 1, 0 \rangle$ $\hat{\mathbf{k}} = z - axis = \langle 0, 0, 1 \rangle$	Circumflex or "hat" on top. Indicates direction only. Always has a magnitude of one (1 or unit).
(Basis Vector)	$\vec{u} = \frac{a}{\ a\ }$	$\vec{\boldsymbol{u}} = \frac{a_x \hat{\boldsymbol{\iota}} + a_y \hat{\boldsymbol{j}} + a_z \hat{\boldsymbol{k}}}{\sqrt{a_x^2 + a_y^2 + a_z^2}}$

Vector Operations

Operation	Formula	Example
	$\boldsymbol{a} + \boldsymbol{b} = (a_x + b_x)\hat{\boldsymbol{i}} \\ + (a_y + b_y)\hat{\boldsymbol{j}} \\ + (a_z + b_z)\hat{\boldsymbol{k}}$	$\boldsymbol{a} + \boldsymbol{b} = (3+6)\hat{\boldsymbol{i}} + (4-7)\hat{\boldsymbol{j}} + (5-8)\hat{\boldsymbol{k}}$ $= 9\hat{\boldsymbol{i}} - 3\hat{\boldsymbol{j}} - 3\hat{\boldsymbol{k}}$
Addition	a + b = b + a	Commutative
	(a+b) + c = a + (b+c)	Associative
	$(k+m)\boldsymbol{a} = k\boldsymbol{a} + m\boldsymbol{a}$	Distributive
	$k(\boldsymbol{a} + \boldsymbol{b}) = k\boldsymbol{a} + k\boldsymbol{b}$	Distributive
	a a +	a -a
Subtraction	a - b = a + (-b)	Change the direction of $ec{b}$ then add.
	+	3 + + + + + + + + + + + + + + + + + + +
Scalar Multiplication	$k\boldsymbol{a} = ka_x \hat{\boldsymbol{\iota}} + ka_y \hat{\boldsymbol{j}} + ka_z \hat{\boldsymbol{k}}$	$3 \cdot \mathbf{a} = 3 \cdot 3\mathbf{i} + 3 \cdot 4\mathbf{j} + 3 \cdot 5\mathbf{k}$ $= 9\mathbf{\hat{i}} + 12\mathbf{\hat{j}} + 15\mathbf{\hat{k}}$
Wattpication	Changes the magnitude only.	
	$k(\boldsymbol{a} + \boldsymbol{b}) = k\boldsymbol{a} + k\boldsymbol{b}$	a a 3a
	$\boldsymbol{a} \bullet \boldsymbol{b} = a_x b_x + a_y b_y + a_z b_z$	$a \cdot b = (3)(6) + (4)(-7) + (5)(-8)$ = -50
Dot Product (Scalar Product)	$\boldsymbol{a} \boldsymbol{\cdot} \boldsymbol{b} = \ \boldsymbol{a}\ \ \boldsymbol{b}\ \cos \theta$	$\cos\theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\ \boldsymbol{a}\ \ \boldsymbol{b}\ }$
	$a \cdot b = b \cdot a$	Commutative
	$a \cdot (b+c) = a \cdot b + a \cdot c$	Distributive
	$k(\boldsymbol{a} \boldsymbol{\cdot} \boldsymbol{b}) = k\boldsymbol{a} \boldsymbol{\cdot} \boldsymbol{b} = \boldsymbol{a} \boldsymbol{\cdot} k\boldsymbol{b}$	Scalar Multiplication
	$0 \bullet \boldsymbol{u} = 0$	Zero Vector Dot Product
	$\boldsymbol{u} ullet \boldsymbol{u} = \ \boldsymbol{u} \ ^2$	Dot Product and Vector Magnitude Relationship
	Is always a scalar.	

Vector Applications

Application	Formula	Example
Projection	$proj_a b = \left(\frac{a \cdot b}{a \cdot a}\right) a$	\mathbf{a} \mathbf{b} $\mathbf{a} \cdot \mathbf{b} = \ \mathbf{a}\ \cos \theta$
Right Hand Rule	The cross product produces a vector orthogonal to the other two vectors.	Use the right hand rule to determine direction of the cross product vector.
	$\vec{C} = \vec{A} \times \vec{B}$	a b b c c c c c c c c c c c c c c c c c
Area (Parallelagram)	$A = \ \boldsymbol{a} \times \boldsymbol{b}\ $	a x b Area = a x b (rength of vector a x b) Rength of vector a x b)
Volume (Parallelepiped)	$V = \ (\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}\ $	Ă Ē Ĉ
Torque	$ au = r \times F$	$\ \boldsymbol{\tau}\ = r F \sin \theta$
Coplanar	Three vectors are coplanar if $(\boldsymbol{a} \times \boldsymbol{b}) \bullet \boldsymbol{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = 0$	All three vectors are in the same plane.