Harold's Vectors Cheat Sheet

5 December 2022

Definitions

Term	Formula	Example
Vector Notation	А, а	Bold letter
	\vec{a} , \vec{a}	Arrow on top
C	$\boldsymbol{a} = \vec{a} = a_x \hat{\boldsymbol{\imath}} + a_y \hat{\boldsymbol{\jmath}} + a_z \hat{\boldsymbol{k}}$	$a = 3\hat{\imath} + 4\hat{\jmath} + 5\hat{k}$
Component Notation	$\boldsymbol{a} = \langle a_x, a_y, a_z \rangle$	$a = \langle 3, 4, 5 \rangle$
Notation	$a = r \angle \theta$	$a = 5 \angle 53.13^{\circ} (2D)$
	V _x 2D	a_{x} a_{x} a_{y} a_{y}
		3D
Vectors Used in Examples	$\mathbf{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} + a_z \hat{\mathbf{k}}$ $\mathbf{b} = b_x \hat{\mathbf{i}} + b_y \hat{\mathbf{j}} + b_z \hat{\mathbf{k}}$ 2D : set $a_z = b_z = 0$	$a = 3\hat{\imath} + 4\hat{\jmath} + 5\hat{k}$ $b = 6\hat{\imath} - 7\hat{\jmath} - 8\hat{k}$
	$\ a\ = \sqrt{a_x^2 + a_y^2 + a_z^2}$	$\ \boldsymbol{a}\ = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$
Magnitude	Can also use a . Length of vector, but with no direction (scalar). Similar to a hypotenuse. Think multi-dimensional Pythagorean Theorem.	magnitude head head tail
	Divided into dimensional	A scalar with a direction is a vector.
Direction	components. $\tan\theta = \frac{a_{y}}{a_{x}}$	Example: speed vs. velocity $\theta = \tan^{-1}\left(\frac{a_y}{a_x}\right) = \tan^{-1}\left(\frac{4}{3}\right) \cong 53.13^{\circ}$
Unit Vector (Basis Vector)	$\hat{\mathbf{i}} = x - axis = \langle 1, 0, 0 \rangle$ $\hat{\mathbf{j}} = y - axis = \langle 0, 1, 0 \rangle$ $\hat{\mathbf{k}} = z - axis = \langle 0, 0, 1 \rangle$	Circumflex or "hat" on top. Indicates direction only. Always has a magnitude of one (1 or unit).
	$\vec{u} = \frac{a}{\ a\ }$	$\vec{u} = \frac{a_x \hat{i} + a_y \hat{j} + a_z \hat{k}}{\sqrt{a_x^2 + a_y^2 + a_z^2}}$

Scalar	k, m	A number with no direction or units.
Orthogonal	A change in one dimension does not change in any of the values in the other dimensions.	2D: right angle Rectangular Coordinates: The x-axis, y-axis, and z-axis are orthogonal to each other. Polar Coordinates: The angle is orthogonal to the line segment length
	if $\boldsymbol{a} \cdot \boldsymbol{b} = 0$	Two vectors are orthogonal if their dot product is zero.
	$y = \frac{1}{x}$	$v = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}^{\frac{1}{3}}$ $u = \begin{bmatrix} -2 \\ 2 \\ 3 \end{bmatrix}$
Parallel	If $\boldsymbol{a}=k\boldsymbol{b}$	Two vectors are parallel if they have the same direction.
	Collinear of in opposite directions	AB
Vector vs. Matrix	vector = $1 x n$ or $n x 1$ matrix	A matrix with only one (1) row or column.
	Scalar V	ector Matrix
	row or colum	[1-98]

Vector Operations

Operation	Formula	Example
	$\mathbf{a} + \mathbf{b} = (a_x + b_x)\hat{\mathbf{i}} + (a_y + b_y)\hat{\mathbf{j}} + (a_z + b_z)\hat{\mathbf{k}}$	$a + b = (3 + 6)\hat{i} + (4 - 7)\hat{j} + (5 - 8)\hat{k}$ = $9\hat{i} - 3\hat{j} - 3\hat{k}$
Addition	a+b=b+a	Commutative
	(a+b)+c=a+(b+c)	Associative
	$(k+m)\boldsymbol{a} = k\boldsymbol{a} + m\boldsymbol{a}$	Principal Control
	$k(\boldsymbol{a}+\boldsymbol{b})=k\boldsymbol{a}+k\boldsymbol{b}$	Distributive
	b a +	a -a
Subtraction	a-b=a+(-b)	Change the direction of \vec{b} then add.
	1+1	3 =
Scalar Multiplication	$k\mathbf{a} = ka_x \hat{\mathbf{i}} + ka_y \hat{\mathbf{j}} + ka_z \hat{\mathbf{k}}$	$3 \cdot \mathbf{a} = 3 \cdot 3\hat{\mathbf{i}} + 3 \cdot 4\hat{\mathbf{j}} + 3 \cdot 5\hat{\mathbf{k}}$ $= 9\hat{\mathbf{i}} + 12\hat{\mathbf{j}} + 15\hat{\mathbf{k}}$
a.up.iida.io.ii	Changes the magnitude only.	T
	$k(\boldsymbol{a}+\boldsymbol{b})=k\boldsymbol{a}+k\boldsymbol{b}$	\vec{a} \vec{a} \vec{a} \vec{a} \vec{a}
	$\boldsymbol{a} \bullet \boldsymbol{b} = a_x b_x + a_y b_y + a_z b_z$	$a \cdot b = (3)(6) + (4)(-7) + (5)(-8)$ = -50
Dot Product (Scalar Product)	$\boldsymbol{a} \bullet \boldsymbol{b} = \ \boldsymbol{a}\ \ \boldsymbol{b}\ \cos \theta$	$= -50$ $\cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\ \boldsymbol{a}\ \ \boldsymbol{b}\ }$
	$a \cdot b = b \cdot a$	Commutative
	$a \cdot (b+c) = a \cdot b + a \cdot c$	Distributive Cooler Multiplication
	$k(\mathbf{a} \cdot \mathbf{b}) = k\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot k\mathbf{b}$ $0 \cdot \mathbf{u} = 0$	Scalar Multiplication Zero Vector Dot Product
	$u \bullet u = u ^2$	Dot Product and Vector Magnitude
	It is always a scalar.	Relationship
	ic is aiways a scalar.	

		$\begin{vmatrix} a & \mathbf{u} \\ b_y & b_z \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \mathbf{k}$
	$\ \boldsymbol{a} \times \boldsymbol{b}\ = \ \boldsymbol{a}\ \ \boldsymbol{b}\ \sin \theta$	$\sin \theta = \frac{\ \mathbf{a} \times \mathbf{b}\ }{\ \mathbf{a}\ \ \mathbf{b}\ }$
	$a \times b = -b \times a$	Anti-Commutative
(Vector Product)	$(a \times b) \times c \neq a \times (b \times c)$ $(a \times b) \times c = (a \cdot c)b - (a \cdot b)c$	Not Commutative
,	$a \times (b \times c) \neq (a \times b) \times c$ $a \cdot (b \times c) = (a \times b) \cdot c$	Not Associative
	$a \times (b+c) = a \times b + a \times c$ $(a+b) \times c = a \times c + b \times c$ $k(a \times b) = ka \times b = a \times kb$	Distributive
	$(k\mathbf{a}) \times \mathbf{b} = k(\mathbf{a} \times \mathbf{b})$ $= \mathbf{a} \times (k\mathbf{b})$	Scalar Multiplication
	It is always a vector orthogonal to	the other two vectors.
	$\mathbf{a} \times \mathbf{b}$ $\mathbf{b} \times \mathbf{a}$ $= -\mathbf{a} \times \mathbf{b}$	$ \begin{array}{c c} a \times b \\ b \\ \theta \\ a \end{array} $
Scalar Triple Product	$(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c} = \boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c}) = \boldsymbol{b} \cdot (\boldsymbol{c} \times \boldsymbol{a}) = \boldsymbol{c} \cdot (\boldsymbol{a} \times \boldsymbol{b}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$	
Vector Triple Product	$a \times (b \times c) = (a \cdot c) b - (a \cdot b) c$	

Vector Applications

Application	Formula	Example
Projection	$proj_{a}b = \left(\frac{a\cdot b}{a\cdot a}\right)a$	\mathbf{a} $\mathbf{a} \cdot \mathbf{b} = \ \mathbf{a}\ \cos \theta$
Right Hand Rule	The cross product produces a vector orthogonal to the other two vectors.	Use the right hand rule to determine direction of the cross product vector.
	$\vec{C} = \vec{A} \times \vec{B}$	a xb
Area (Parallelagram)	$A = a \times b $	Area = a x b [length of vector a x b)
Volume (Parallelepiped)	$V = \ (\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}\ $	à B C
Torque	$ au = r \times F$	$\ \boldsymbol{\tau}\ = r F \sin \theta$
Coplanar	Three vectors are coplanar if $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = 0$	All three vectors are in the same plane.