Harold's Descriptive Statistics Cheat Sheet 22 October 2022

Descriptive

Description	Population	Sample	Used For
Data	Parameters	Statistics	Describing and predicting.
Random Variable	Χ,Υ	х, у	The random value from the evaluated population.
Size	Ν	n	Number of observations in the population / sample.

Measures of Cent	er	(Measure of central tendency)	Indicates which value is typical for the data set.
Mean	$\mu = \frac{1}{N} \sum_{i=1}^{N} x_{i} f$ $f = 1 if samples are unordered$	$\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} x_i f$ $n = \sum f$	Measure of center for unordered and frequency distributions. Average, arithmetic mean. Used when same probabilities for each X. Answers "Where is the center of the data located?"
Weighted Mean	$\mu = \frac{\sum a_i x_i}{\sum a_i}$	$\overline{\boldsymbol{x}} = \frac{\sum a_i x_i}{\sum a_i}$	Some values are counted more than once. a _i = positive integer or percentage.
Median	$Md = \frac{n+1}{2} if n is odd$	$Md = \frac{n}{2} + 1 if n is even$	The middle element in a <u>sorted</u> dataset. More useful when data are skewed with outliers.
Mode	$Mo = \max(f)$	Appropriate for categorical data.	The most frequently-occuring value in a dataset.
Mid-Range	I-Range $MidRange = \frac{max. + min.}{2}$ Not often used, easy to		Highly sensitive to unusual values.
Python	<pre>import pandas as pd data = pd.read_csv('file.csv') print(data.mean()) print(data[['Header1']].median()) print(data[['Header1', 'Header2']].mode()) mid range = (data.min() + data.max()) / 2.0</pre>		

Description	Population	Sample		Used For	
Measures of Disp	ersion	(Measure of dispersion, v or spread of the distrik	variability, oution)	Reflect the variability of the data (e.g. how different the values are from each other.	
Variance	$\sigma^{2} = \frac{1}{N} \sum_{N} (x_{i} - \mu)^{2} f$ $\sigma^{2} = \frac{1}{N} \left(\sum_{i=1}^{N} f x_{i}^{2} - N \mu^{2} \right)$	$s^{2} = \frac{1}{n-1} \sum_{n} (x_{i} - \bar{x})^{2} f$ $s^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} f x_{i}^{2} - n \bar{x}^{2} \right)$		The average of the sum of the square differences. Not often used. See standard deviation. Special case of covariance when the two variables are identical.	
Covariance	$\sigma(X,Y) = \frac{1}{N} \sum_{i=1}^{N} (x - \mu_x) (y - \mu_y)$ $\sigma(X,Y) = \frac{1}{N} \sum_{i=1}^{N} x_i y_i - \mu_x \mu_y$	$g = \frac{1}{n-1} \sum_{x_i = 1}^{n-1} (x - \bar{x})(y - \bar{y})$ $\sigma(x, y) = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} \right)$		A measure of how much two random variables change together. Measure of "linear depenedence". If X and Y are independent, then their covarience is zero (0).	
Standard Deviation	$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$ $\sigma = \sqrt{\frac{\sum x_i^2}{N} - \mu^2}$	$s_{x} = \sqrt{\frac{\sum (x_{i} - \bar{x})^{2}}{n - 1}}$ $s = \sqrt{\frac{\sum x_{i}^{2} - n \bar{x}^{2}}{n - 1}}$		Measure of variation; average distance from the mean. Same units as mean. Answers "How spread out is the data?"	
Mean Absolute Deviation	$MAD = \frac{1}{N} \sum x_i - \mu $	$MAD = \frac{1}{n} \sum x_i -$	$ \bar{x} $	Uses the absolute value instead of the square root of a sum of squares to avoid negative distances.	
Pooled Standard Deviation	$\sigma_p = \sqrt{\frac{N_1 \ \sigma_1^2 + N_2 \ \sigma_2^2}{N_1 + N_2}}$	$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_1 - 1)s_1^2 + (n_1 - 1)s_1^2}{(n_1 - 1) + (n_1 - 1)s_1^2}}$	$(s_2 - 1)s_2^2$ $(s_2 - 1)$	Inferences for two population means.	
Interquartile Range (IQR)	IQR = Q3 - Q1	Q1 Q2 Q3 25% 25% 25% 25%		Less sensitive to extreme values.	
Range	Range = max min.	Not often used, easy to co	mpute.	Highly sensitive to unusual values.	
Python	<pre>import pandas as pd data = pd.read_csv(`file. print(data.var()) print(data.cov()) print(data.std())</pre>	.csv') print(data.mad()) def IQR(data): # (import Q3 = np.quantile(data, 0.7 Q1 = np.quantile(data, 0.2 IQR = Q3 - Q1 range = data.max() - data.min(<pre>ta.mad()) data): # (import numpy as np) np.quantile(data, 0.75) np.quantile(data, 0.25) = Q3 - Q1 data.max() - data.min()</pre>	

Description	Population	Sample	Used For		
Measures of Relative Standing		(Measures of relative position)	Indicates how a particular value compares to the others in the same data set.		
Percentile	Data divided onto 100 equal parts by	rank.	Important in normal distributions.		
Quartile	Data divided onto 4 equal parts by ra	nk.	Used to compute IQR.		
Z-Score / Standard	$x = \mu + z \sigma$	$x = \bar{x} + z s$	The z variable measures how many standard deviations the value is away from the mean		
Score / Normal Score	$z = \frac{x - \mu}{\sigma}$	$z = \frac{x - \bar{x}}{s}$	Rule of Thumb: Outlier if $ z > 2$.		
Calculator (TI-84)	[2 nd][VARS][2] normalcdf(-1E99, z)				
Python	<pre>import scipy.stats as st mean, sd, z = 0, 1, 1.5 print(st.norm.cdf(z, mean, s) print(st.norm.sf(z, mean, s) mean, sd, x = 55, 7.5, 62 print(st.norm.cdf(x, mean, s) print(st.norm.sf(x, mean, s)</pre>	sd)) # $P(z \le 1.5)$ d)) # $P(z \ge 1.5)$ sd)) # $P(x \le 62)$ d)) # $P(x \ge 62)$	0.9331927987311419 0.0668072012688580 0.8246760551477705 0.1753239448522295		

Example	Data	Method	Results		
Example					
Data	Unordered Data: 1	, 0, 1, 4, 1, 2, 0, 3, 0, 2, 1, 1, 2, 0, 1, 1, 3	p(x) = f/n		
Manually	x f 0 4 1 7 2 3 3 2 4 1	xf $x - \overline{x}$ $(x - \overline{x})^2$ $(x - \overline{x})^2 f$ 04-1.351.837.3217-0.350.120.87230.650.421.26321.652.715.43412.657.017.01	$n = \sum_{i=1}^{n} f = 4 + 7 + 3 + 2 + 1 = 17$ $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i f = \frac{(0 \cdot 4) + \dots + (4 \cdot 1)}{17} = \frac{23}{17} \approx 1.35$ $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x - \bar{x})^2 f = \frac{7.32 + \dots + 7.01}{17} \approx 1.21$ $\sigma = \sqrt{\sigma^2} \approx 1.13$		
Calculator (TI-84)		1. [STAT] [1] selects the list edit screen 2. Move cursor up to L1 3. [CLEAR] [ENTER] erases L1 4. Repeat for L2 5. Enter x data in L1 and f data in L2 6. [STAT] \rightarrow [1] to select 1-Var Stats 7. [2 nd] [1] [ENTER] for L1 8. [2 nd] [2] [ENTER] for L2 9. Calculate [ENTER]	Output: I-Var Stats x=1.352941176 x=23 xx2=53 Sx=1.169464432 ox=1.134547148 n=17 minX=0 VQ1=.5		
Python	<pre>import pandas as pd df = pd.DataFrame([1,0,1,4,1,2,0,3,0,2,1,1,2,0,1,1,3]) print(df.describe()) print() print(df.std(ddof=1)) # Sample SD print(df.std(ddof=0)) # Population SD ====================================</pre>		Output: count 17.000000 mean 1.352941 std 1.169464 min 0.000000 25% 1.000000 50% 1.000000 75% 2.000000 max 4.000000 std1 1.169464 std0 1.134547		

Regression and Correlation

Description	Formula	Used For			
Response Variable	Y	Output			
Covariate / Predictor Variable	X	Input			
Least-Squares Regression Line	$\hat{y} = b_0 + b_1 x$	b_1 is the slope b_0 is the y-intercept (\bar{x}, \bar{y}) is always a point on the line			
Regression Coefficient (Slope)	$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x - \overline{x})^2}$ $b_1 = r \frac{s_y}{s_x}$	b_1 is the slope			
Regression Slope Intercept	$b_0 = \overline{y} - \hat{b}_1 \overline{x}$	b_0 is the y-intercept			
	$r = \frac{1}{\sqrt{1 - \overline{x}}} \left(\frac{x - \overline{x}}{\overline{x}} \right) \left(\frac{y - \overline{y}}{\overline{y}} \right)$	Strength and direction of linear relationship between x and y. $r = \pm 1$ Perfect correlation			
Linear Correlation Coefficient (Sample)	$r = \frac{g}{s_x s_y}$ $r = \frac{g}{s_x s_y}$	$r = +0.9$ Positive linear relationship $r = -0.9$ Negative linear relationship $r = \sim 0$ No relationship $r \ge 0.8$ Strong correlation $r \le 0.5$ Weak correlation			
		Correlation DOES NOT imply causation.			
Residual	$\hat{e}_i = y_i - \hat{y}$ $\hat{e}_i = y_i - (b_0 + b_1 x)$ $\sum e_i = \sum (y_i - \hat{y}_i) = 0$	Residual = Observed – Predicted			
Standard Error of Regression Slope	$s_{b_1} = \frac{\sqrt{\frac{\sum e_i^2}{n-2}}}{\sqrt{\sum (x_i - \bar{x})^2}}$ $s_{b_1} = \frac{\sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}}}{\sqrt{\sum (x_i - \bar{x})^2}}$	Residuals are shown in RED			
Coefficient of Determination	r^2	How well the line fits the data. Represents the percent of the data that is the closest to the line of best fit. Determines how certain we can be in making predictions			

Proportions

Description	Population	Sample	Used For	
	$P = p = \frac{x}{N}$	$\hat{p} = \frac{x}{n}$	Probability of success . The proportion of elements that has a particular attribute (x).	
Proportion	q = 1 - p $Q = 1 - P$	$\widehat{q} = 1 - \widehat{p}$	Probability of failure . The proportion of elements in the population that does not have a specified attribute.	
Variance of Population	$\sigma^2 = \frac{pq}{N}$	$s_p^2 = \frac{\hat{p}\hat{q}}{n-1}$	Considered an unbiased estimate of the	
(Sample Proportion)	$\sigma^2 = \frac{p(1-p)}{N}$	$s_p^2 = \frac{\hat{p}(1-\hat{p})}{n-1}$	true population or sample variance.	
		$\hat{p}_p = \frac{x_1 + x_2}{n_1 + n_2}$	$x=\hat{p}n=$ frequency, or number of	
Pooled Proportion	NA	$\hat{p}_p = \frac{\hat{p}_1 n_1 + \hat{p}_2 n_2}{n_1 + n_2}$	members in the sample that have the specified attribute.	

Discrete Random Variables

Description	Formula	Used For		
Random Variable	X	A rule that assigns a number to every outcome in the sample space, S. e.g., X(a, b) = a + b = r Derived from a probability experiment with different probabilities for each X. Used in discrete or finite PDFs.		
Event	$\begin{array}{l} X = r \\ X(s) = r \end{array}$	An event assigns a value to the random variable X with probability: P(X = r)		
Expected Value of X	$E[X] = \bar{x} \text{ or } \mu_{x}$ Each event: $E[X] = \sum_{S \in S} P(X) \cdot X$ $E[X] = \sum_{S \in S} X(S) \cdot P(S)$ Groups of like events: $E[X] = \sum_{i=1}^{N} p_{i}(x) \cdot x_{i}$ $E[X] = \sum_{r \in X(S)} r \cdot P(X = r)$	E(X) is the same as the mean or average. X takes some countable number of specific values. Discrete. Expectation of a random variable. P(s) = probability of outcome s from S.		
Linearity of Expectations	E[X + Y] = E[X] + E[Y] $E[X + Y + Z] = E[X] + E[Y] + E[Z]$ $E[cX] = cE[X]$	When carefully applied, linearity of expectations can greatly simplify calculating expectations. Does not require that the random variables be independent.		
Variance of X	$V(X) = \sigma_x^2 = \sum p_i(x) \cdot (x_i - \mu_x)^2$ $\sigma_x^2 = \sum P(X) \cdot (X - E[X])^2$ $\sigma_x^2 = \sum X^2 \cdot P(X) - E[X]^2$ $\sigma_x^2 = E[X^2] - E[X]^2$	Calculate variances with proportions or expected values.		
Standard Deviation of <i>X</i>	$SD(X) = \sqrt{V(X)}$ $\sigma_x = \sqrt{\sigma_x^2}$	Calculate standard deviations with proportions.		
Sum of Probabilities $\sum_{i=1}^{N} p_i(x) = 1$ If same probability,		If same probability, then $p_i(x) = \frac{1}{N}$.		

NOTE: See also "Discrete Definitions" on <u>Harold's Stats Distributions Cheat Sheet</u>.

Sampling Distribution Statistical Inference

Description	Mean Standard Deviation		
Sampling Distribution	Is the probability distribution of a sta	atistic; a statistic of a statistic.	
Central Limit Theorem (CLT)	$PDF(\bar{x}) \approx \mathcal{N}\left(0, \frac{\sigma^2}{n}\right)$	As the sample size drawn from the population with distribution X becomes larger, the sampling distribution of the means \overline{X} approaches that of a normal distribution $\mathcal{N}\left(0, \frac{\sigma^2}{n}\right)$.	
Sample Mean	$\mu_{ar{x}} = \mu$	Sampling with replacement: $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$ Sampling without replacement: $\sigma_{\bar{x}} = \sqrt{\frac{N-n}{N-1}} \cdot \frac{\sigma}{\sqrt{n}}$ (2x accuracy needs 4x n)	
z-Score	$z = \frac{\bar{x} - \mu_{\bar{x}}}{\sigma_{\bar{x}}} \qquad \qquad$		
Sample Mean Rule of Thumb	Use if $n \ge 30$ or if the population distribution is normal		
10% Condition	$n \leq \frac{N}{10}$. Sample size must be at most 10% of the population size.		
Sample Proportion $\mu = p$		$\sigma_p = \sqrt{\frac{p(1-p)}{n}}$	
z-Score	$z=rac{\hat{p}-\mu}{\sigma_p}$	$z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$	
Sample Proportion Rule of Thumb	Large Counts Condition: Use if $np \ge 5$ and $n(1-p) \ge 5$ Use if $np \ge 10$ and $n(1-p) \ge 10$	10 Percent Condition: Use if $N \ge 10n$	
Difference of Sample Means	ce of Sample Means $E(\bar{x}_1 - \bar{x}_2) = \mu_{\bar{x}_1} - \mu_{\bar{x}_2}$ $\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$		
Special case when $\sigma_1=\sigma_2$	$\sigma_{\bar{x}_1 - \bar{x}_2} = \sigma_{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$		
Difference of Sample Proportions	$\Delta \hat{p} = \hat{p}_1 - \hat{p}_2$	$\sigma = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$	
Special case when $p_1 = p_2$		$\sigma = \sqrt{p(1-p)} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	

Bias	Caused by non-random samples. <u>Selection Bias</u> : Under coverage, Nonresponse, Voluntary response <u>Response Bias:</u> Acquiescence, Extreme, Social desirability	High bias, low variability	Low blas, high variability
Variability	Caused by too small of a sample. n < 30 <u>Sampling Methods:</u> Simple random, systematic, stratified, cluster, convenience	(a) (a) High bias, high variability (c)	(b)

Confidence Intervals for One Population Mean / Proportion (σ is Known)

Description	Forn	nula		
Critical Value (z*)	Usually set ahead of time, unless using p-values to determine. Set to a threshold value of 0.05 (5%) or 0.01 (1%), but always ≤ 0.10 (10%).	Confidence LevelCritical Valuec = 0.90z* = 1.645c = 0.95z* = 1.960c = 0.99z* = 2.576		
p-value	Probability of obtaining a sample "more your data, assuming H_0 is true.	e extreme" than the ones observed in		
Sample Size (for estimating μ)	$n = \left(\frac{z^*\sigma}{SE}\right)^2 = \left(\frac{z^*}{SE}\right)^2 p(1-p)$ The size of the sample needed to guarantee a confidence interval with a specified margin of error. Rounded up to the nearest whole number.			
Margin of Error / Standard	$SE(\bar{x}) = m = z^* \frac{\sigma}{\sqrt{n}} = z^* \sqrt{\frac{p(1-p)}{n}}$ The estimate \bar{x} differs from the actual value by at most SE. Use p = 0.50 for worst case if no previous estimate is known.			
(for the estimate of μ)	SE with replacement: $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{p(1-p)}{n}}$ SE without replacement (with correction factor) $\sigma_{\bar{x}} = \sqrt{\frac{N-n}{N-1}} \cdot \frac{\sigma}{\sqrt{n}}$			
Confidence Interval for μ (z interval) (σ known, normal population or large sample)	$\sigma_{\bar{x}} = \frac{\sqrt{n}}{\sqrt{n}} = \sqrt{\frac{1}{n}}$ $\sigma_{\bar{x}} = \sqrt{\frac{N-n}{N-1}} \cdot \frac{\sigma}{\sqrt{n}}$ $z \text{ interval} = statistic \pm (critical value) \bullet (SD \text{ of statistic})$ $z \text{ interval} = \bar{x} \pm SE(\bar{x})$ $\bar{x} \pm m = [\bar{x} - m, \ \bar{x} + m]$ $z \text{ interval} = \bar{x} \pm z^* \frac{\sigma}{\sqrt{n}} = \bar{x} \pm z^* \sqrt{\frac{p(1-p)}{n}}$ α $\overline{x} - m$ \overline{x} $\overline{x} + m$ $\frac{\alpha}{2} = \frac{1-c}{2}$ $z^* = z \text{ score for probabilities of } \frac{\alpha}{2} / c \text{ (two - tailed)}$			
$z^{*} = z \text{ score for probabilities of } \frac{a}{2} (two - tailed)$ Standardized Test Statistic (of the variable \bar{x} from the CLT) $z = \frac{\bar{x} - \mu}{\sigma}$ $z = \frac{\bar{x} - \mu}{\sigma}$				

Confidence Intervals for One Population Mean / Proportion (o is Unknown)

Description	Formula					
		df	α = 0.10	α = 0.05	α = 0.01	
	Usually set anead of time, unless	5	2.015	2.571	4.032	
	using p-values to determine. $df = n-1$.	10	1.812	2.225	3.169	
Critical value (t*)	Set to a threshold value of 0.05 (5%)	15	1.753	2.131	2.947	
	Set to a threshold value of 0.05 (5%) $ar = 0.01 (10\%)$ but always $\leq 0.10 (10\%)$		1.711	2.064	2.797	
	$010.01(170)$, but always $\leq 0.10(1070)$.	32	1.309	1.694	2.449	
p-value	Probability of obtaining a sample "more your data, assuming H_0 is true.	Probability of obtaining a sample "more extreme" than the ones observed in your data, assuming H_0 is true.				
	Preliminary estimate of n:					
	$n^* = ($	$\left(\frac{z^*s}{SE}\right)^2$				
Sample Size	Actual sample size, n:	. * 2				
(for estimating μ)	n = ($\left(\frac{t^*s}{SE}\right)^2$				
	The size of the sample needed to guara	ntee a	confidence	interval w	ith a	
	specified margin of error. Rounded up	to the	nearest wh	ole numbe	r.	
	$SE(\bar{x}) = r$	$n = t^*$	$\frac{s}{\sqrt{n}}$			
Margin of Error / Standard	The estimate \bar{x} differs from the actual value by at most SE.					
Error (SE)	SE without replacement			ent		
(for the estimate of μ)	SE with replacement:		(with corr	ection fact	or):	
	$s_{\bar{x}} = \frac{s}{\sqrt{n}}$ $s_{\bar{x}} = \sqrt{\frac{N-n}{N-1}} \cdot \frac{s}{\sqrt{n}}$					
	$t interval = statistic \pm (critical value) \bullet (SD of statistic)$					
	$t \ interval = \bar{x} \pm SE(\bar{x})$					
	$\bar{x} \pm m = [\bar{x} + \bar{x}]$	$-m, \bar{x}$	$\bar{c} + m$]			
	$t interval = \overline{x} \pm t^* \frac{s}{\sqrt{2}}$					
Confidence Interval for u		χ	vn.	_		
(t interval)						
(σ unknown, t distribution or			C			
small sample)			1			
	$\overline{x}-m$ \overline{x} $\overline{x}+m$					
	$t = \frac{statistic}{statistic}$	– paro	ameter			
Standardized Test Statistic	$\iota = \frac{1}{SD \ of \ statistic}$					
(of the variable $ar{x}$ from the						
CLT)	$t = \frac{1}{2}$	$\frac{1-\mu}{5}$				
	$\frac{s}{\sqrt{n}}$					

Confidence Intervals for the Difference Between Two Population Means / Proportions (σ is Known)

Description	Formula						
Critical Value (z*)	Usually set ahead of time, unless using p-values to determine.	Confidence Level	Critical Value				
		c = 0.90	$Z^{+} = 1.645$				
	Set to a threshold value of 0.05 (5%)	c = 0.99	z* = 1.900 z* = 2.576				
n velue	or 0.01 (1%), but always \leq 0.10 (10%).	- 2					
p-value	$E(\bar{x}_{4} - \bar{x}_{2}) = \mu_{z} - \mu_{z}$						
	$SE(\bar{x}_1 - \bar{x}_2) = \int SE_1^2 + SE_2^2 = m$						
Margin of Error / Standard							
Error (SE) (for the estimate of μ)	$= \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}} = \sqrt{\hat{p}(1-\hat{p})} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$						
	\hat{p} = Overall probability of success when the two samples are combined.						
	The estimate $\bar{x}_1 - \bar{x}_2$ differs from the actual value by at most SE.						
	Use p = 0.50 for worst case if no previous estimate is known.						
Confidence Interval for μ (z interval) (σ known, normal population or large sample)	z interval = statistic \pm (critical value) • (SD of statistic) z interval = $(\bar{x} - \bar{x}) + SE(\bar{x} - \bar{x})$						
	$\begin{bmatrix} \bar{x}_1 & \bar{x}_2 \\ (\bar{x}_1 - \bar{x}_2) \pm m = [(\bar{x}_1 - \bar{x}_2) - m, \ (\bar{x}_1 - \bar{x}_2) + m] \end{bmatrix}$						
	$z interval = (\bar{x}_1 - \bar{x}_2) \pm z^* \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$						
	$z interval = (\bar{x}_1 - \bar{x}_2) \pm z^* \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$						
	$\frac{\alpha}{2} = \frac{1-c}{2}$						
	$z^* = z$ score for probabilities of $\alpha/2$ (two – tailed)						
	$z = \frac{observed \ difference - hypothesided \ difference}{c}$						
Standardized Test Statistic (of the variable \bar{x} from the CLT)	SD for the difference						
	$(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2) = 0$						
	$z = \frac{(x_1 - x_2) - 6}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$						
Python	<pre>from statsmodels.stats.weightstat sample1 = [21, 28, 40, 55, 58, 60 sample2 = [13, 29, 50, 55, 71, 90 print(ztest(x1 = sample1, x2 = sa 0))</pre>	<pre>s import ztest]] mple2, value =</pre>	(-0.58017, 0.56179) z-score = -0.5802 p-value = 0.5618 (two-tailed)				

Confidence Intervals for the Difference Between Two Population Means / Proportions (σ is Unknown)

D	escription	Formula					
Critical Value (t*)	Usually set ahead of time, unless using p-values to determine. $df = n-1$.	df	α = 0.10	α = 0.05	α = 0.01		
		5	2.015	2.571	4.032		
		10	1.812	2.225	3.169		
	Set to a threshold value of 0.05 (5%) or 0.01	15	1.753	2.131	2.947		
	Set to a threshold value of 0.05 (5%) or 0.01 (1%), but always ≤ 0.10 (10%).	24	1.711	2.064	2.797		
		32	1.309	1.694	2.449		
p-value		TI-84: DISTR 6: tcdf(t_test, 9999	9999)	= p	•		
Margin of	f Error / Standard	$SE(\bar{x}_1 - \bar{x}_2) = m = \frac{s_d}{\sqrt{n}}$					
Error (SE)	-						
(for the e	stimate of μ)	The estimate $\bar{x}_1 - \bar{x}_2$ differs from the actual value by at most SE.					
Confiden	ce Interval for μ	$t interval = statistic \pm (critical value) \bullet (SD of statistic)$					
(t interva	I)		6				
(σ unknov	wn, t distribution or	$t interval = (\bar{x}_1 - \bar{x}_2) + \frac{s_d}{d}$					
small sam	iple)		\sqrt{n}				
	$t = \frac{mean alf ference between sample}{mean alf ference between sample}$	es - p	oarameter				
	sample SD of the differen	ices /	\sqrt{n}				
		Paired t-test:					
		$t - \frac{d - \mu_d}{d}$					
		$c = \frac{s_d}{r_a}$					
		df = n - 1					
Standard	ized Test Statistic	$u_j = n - 1$					
(of the variable \bar{x} from the CLT)	riable \bar{x} from the	Unpaired t-test:					
	$(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)$						
	$t = \frac{1}{\sqrt{2}}$						
	$\frac{S_{1}^{2}}{S_{1}^{2}} + \frac{S_{2}^{2}}{S_{2}^{2}}$						
	$\sqrt{n_1 + n_2}$						
	$df = n_1 + n_2 - 2$						
		$t = \frac{p_1 - p_2}{cE}$					
Paired	import scipy.stats as st	Ttes	t_relResul	.t	1		
	Paired	import pandas as pd	(stat	tistic = 1	.4179,		
		<pre>dI = pd.read_csv('ExamScores.csv') st.ttest rel(df['Exam1'],df['Exam2'])</pre>	pvari	ue - 0.102	.54)		
		<pre>import scipy.stats as st</pre>	Ttoo	t indRegul	+	-	
Duthon	Unpaired	import pandas as pd	(sta	tistic = 3	3.3972,		
Python		<pre>st.ttest ind(df['0ld'], df['New'],</pre>	pval	ue = 0.003	324)		
		equal_var=False))					
	from statsmodels.	stats.proportion import proportions_ztest (statistic = -2 04522					
	n = [5000, 5000]	pvalue = 0.04083)					
<pre>print(proportions_ztest(counts, n))</pre>							

Sources:

• <u>SNHU MAT-353</u> - Applied Statistics for STEM, zyBooks.