Harold's Probability Cheat Sheet 22 October 2022

Probability

Rule	Formula	Definition
	\cap = "and", Intersection, or " \wedge "	"and" implies multiplication.
Notation	U = "or", Union, or "V"	"or" implies addition.
	= "not", negation, or "¬"	"not" implies negation.
		The occurrence of one event does not
Independent	If $P(A B) = P(A)$	affect the probability of the other, or vice
		versa.
Dependent	If $P(A \cap B) \neq \emptyset$	The occurrence of one event affects the
		probability of the other event.
Disjoint	If $P(A \cap B) = \emptyset$	The events can never occur together.
("mutually exclusive")	Then $P(A \cup B) = P(A) + P(B)$	The events can never occur together.
Desta ballit	$0 \leq P(E) \leq 1$	
Probability	# Events(E)	# of Favorable Outcomes
("likelihood")	$P(E) = \frac{1}{Sample Space(S)}$	= # of Favorable Outcomes Total # of Possible Outcomes
Addition Rule	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	
("or")		\sim
	if independent or disjoint:	
	$P(A \cap B) = P(A) P(B)$	
	$P(A \cap B \cap C) = P(A) P(B) P(C)$	
Multiplication Rule	. Charles a la st	AnB
("and")	if dependent: $P(A \circ B) = P(A) P(B A)$	
	$P(A \cap B) = P(A) P(B A)$ $P(A \cap B) = P(B) P(A B)$	
	$P(A \cap B) = P(A) - P(A \cap \overline{B})$	
	$P(S) = P(A \cup \overline{A}) =$	
	$P(A) + P(\overline{A}) = 1$	
Complement Rule /		The complement of event A (denoted
Subtraction Rule	$P(A) = 1 - P(\overline{A})$	$\overline{A} \text{ or } A^c$) means " not A "; it consists of all
("not")	$\boldsymbol{P}(\overline{A}) = \boldsymbol{1} - \boldsymbol{P}(A)$	simple outcomes that are not in A.
	$P(A B) + P(\overline{A} B) = 1$	
	$P(A \cap B)$	Moone the probability of event A gives that
Conditional	$P(A B) = \frac{P(A B)}{P(B)}$	Means the probability of event A given that
Probability		event B occurred. Is a rephrasing of the Multiplication Rule. P(A B) is the
("given that")	if independent or disjoint:	proportion of elements in B that are ALSO
	P(A B) = P(A)	in A.
	P(B A) = P(B)	шл.

Copyright © 2016-2022 by Harold Toomey, WyzAnt Tutor

Total Probability Rule	$P(A) = P(A \cap B_1) + \dots + P(A \cap B_n)$ = $P(B_1) P(A B_1) + \dots$ + $P(B_n) P(A B_n)$ $P(A) = P(A \cap B) + P(A \cap \overline{B})$ = $P(B) P(A B) + P(\overline{B}) P(A \overline{B})$	To find the probability of event A, partition the sample space into several disjoint events. A must occur along with one and only one of the disjoint events.
Bayes' Theorem	$P(A B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) P(B A)}{P(B)}$ $= \frac{P(A) P(B A)}{P(A) P(B A) + P(\overline{A}) P(B \overline{A})}$	Allows P(A B) to be calculated from P(B A). Meaning it allows us to reverse the order of a conditional probability statement, and is the only generally valid method!
De Morgan's Law	$\overline{P(A \cup B)} \equiv \overline{P(A)} \cap \overline{P(B)}$	Uses negation to convert an "or" to an "and". Uses negation to convert an "and" to an
	$P(A \cap B) \equiv \overline{P(A)} \cup \overline{P(B)}$	"or".

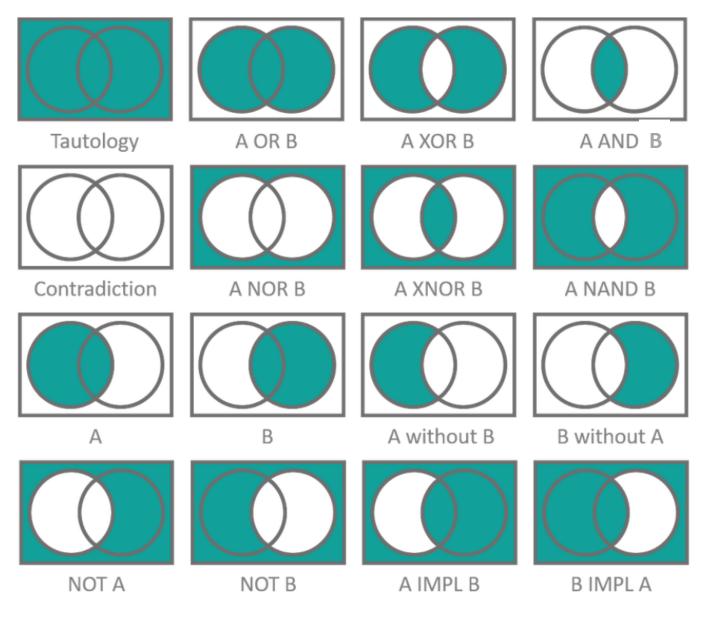
Discrete Distributions

Distribution	Formula	
Probability Distribution	$\sum_{s\in S} p(s) = 1$	
Factorial	$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 3 \cdot 2 \cdot 1$	
Permutation	$P(n,r) = {}_{n}P_{r} = \frac{n!}{(n-r)!}$	
Combination	$C(n,r) = {}_{n}C_{r} = {n \choose r} = \frac{n!}{r!(n-r)!}$	
Uniform Discrete Distribution	$P(X = x) = \frac{1}{b - a + 1}$ $P(S = s) = \frac{1}{ S } per \ outcome$ $P(S = E) = \frac{ E }{ S } per \ event$	
Binomial Distribution	$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$	
Geometric Distribution	$P(X \le x) = q^{x-1}p = (1-p)^{x-1}p$ $P(X > x) = q^x = (1-p)^x$	
Poisson Distribution	Distribution $P(X = x) = \frac{\lambda^{x} e^{-\lambda}}{x!}, x = 0, 1, 2, 3, 4,$	
Bernoulli Distribution	$P(k;p) = p^{k}(1-p)^{1-k} for \ k \in \{0,1\}$	
Trinomial Distribution	$P(X = x, Y = y) = \frac{n!}{x! y! (n - x - y)!} p_1^x p_2^y (1 - p_1 - p_2)^{n - x - y}$	

Copyright © 2016-2022 by Harold Toomey, WyzAnt Tutor

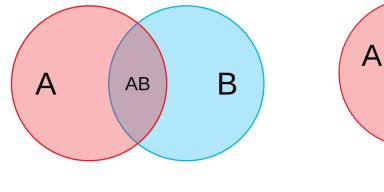
Hypergeometric Distribution	$P(x N,m,n) = \frac{\left(\binom{m}{x}\binom{N-m}{n-x}\right)}{\binom{N}{n}}$
Negative Binomial Distribution	$P(X = r) = _{n+r-1}C_{r-1} p^r q^n$

Venn Diagrams



Sources:

- <u>SNHU MAT 229</u> Mathematical Proof and Problem Solving, <u>How To Prove It A Structured</u> <u>Approach</u>, 3rd Edition - Daniel J. Vellman, Cambridge University Press, 2019.
- <u>SNHU MAT 230</u> Discrete Mathematics, zyBooks.



В

ABC

ACD

D

ABCD BCD

BC

CD

С

AF

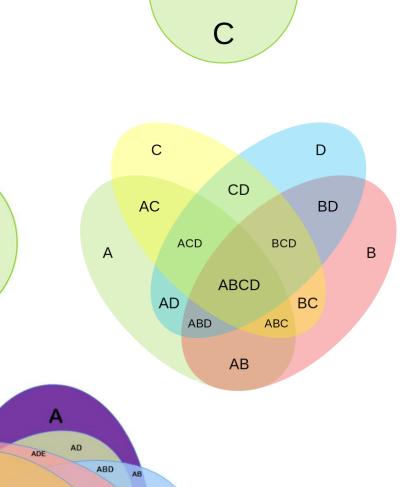
ACE

AB

ABD

AD

А



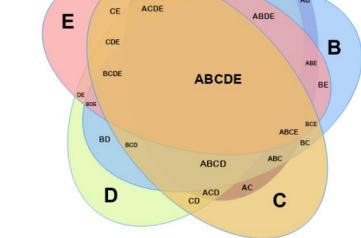
В

A∩B

A∩B∩C

 $B \cap C$

 $\mathsf{A} \cap \mathsf{C}$



Copyright © 2016-2022 by Harold Toomey, WyzAnt Tutor