Harold's Physics of Projectiles

"Cheat Sheet"
26 November 2017

The Classic Cannon Ball Problem

Diagram	
Givens	$\begin{aligned} & v=40^{\mathrm{v}} \mathrm{~m} / \mathrm{s} \\ & \theta=30^{\circ} \end{aligned} \quad \text { Degrees inclined from horizontal }$
	Horizontal (x-axis) \quad Vertical (y-axis)
Unknowns	(1) How far is it at time t ? $(x(t))$ 4 How far will it land? $\left(x_{\max }\right)$ (2) How high is it at time t ? $(y(t))$ (5) How high will it go? $\left(y_{\max }\right)$
	(3) When will it land? $\left(t_{\text {max }}\right)$
Observations	Notes: - Subscripts are dimensions, time, or both. Examples: - v_{x} is the velocity in the x direction. - x_{0} is the initial horizontal position, or horizontal position at time $=0 \mathrm{~s}$. - $v_{y 0}$ is the initial velocity in the y direction (vertical) - Horizontal and vertical dimensions are orthogonal (independent from one another). - Assume no wind resistance (drag). If we factored in wind resistance, then differential calculus is needed. - The cannon ball will reach its highest point exactly half way through its journey. [t_{1} and x_{1}]
	$x_{0}=0, \quad x_{1}=\frac{1}{2} x_{2}, \quad x_{2}=x_{\max }$ $y_{0}=0, \quad y_{1}=y_{\max }$, $v_{2}=0$ $v_{x}=?$, $v_{y 1}=0$, $v_{x 0}=v_{x 1}=v_{x 2}=$ constant $v_{y 0}=-v_{y 0}$ $a_{x}=0$ $a_{y}=\boldsymbol{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
	$t_{0}=0, \quad t_{1}=\frac{1}{2} t_{2}, \quad t_{2}=t_{\text {max }}$
Equations	$\boldsymbol{x}=x_{0}+v_{x 0} t+\frac{1}{2} \boldsymbol{a}_{x} t^{2} \quad \boldsymbol{y}=y_{0}+v_{y 0} t+\frac{1}{2} \boldsymbol{a}_{\boldsymbol{y}} t^{2}$
	$v_{x}=\boldsymbol{v} \cos (\theta) \quad v_{y}=v \sin (\theta)$

We are now ready to solve for all 5 unknowns in the order 1,2,3,4,5.

	Horizontal (x-axis)	Vertical (y -axis)
Solve	$\begin{gathered} \boldsymbol{x}=x_{\theta}+v_{x 0} t+\frac{1}{z} \boldsymbol{a}_{*} t^{z} \\ \boldsymbol{x}=v_{x 0} t \end{gathered}$	$\begin{gathered} \boldsymbol{y}=y_{\theta}+v_{y_{0}} t-\frac{1}{2} g t^{2} \\ \boldsymbol{y}=v_{y 0} t-\frac{1}{2} g t^{2} \end{gathered}$
	$x(t)=v_{x 0} t=v \cos (\theta) t$	$y(t)=v \sin (\theta) t-\frac{1}{2} g t^{2}$
Substitute	$x(t)=40 \cos \left(30^{\circ}\right) t m$	$y(t)=40 \sin \left(30^{\circ}\right) t-4.9 t^{2} \mathrm{~m}$
Box Answer	(1) $x(t)=40 \cos \left(30^{\circ}\right) t m$	(2) $y(t)=40 \sin \left(30^{\circ}\right) t-4.9 t^{2} m$

Solve	$\begin{gathered} \boldsymbol{y}\left(t_{0}\right)=y_{0}=0=v_{y 0} t-\frac{1}{2} g t^{2} \\ (t)\left(v_{y 0}-\frac{1}{2} g t\right)=0 \\ t=t_{0}=0, \quad t=t_{2}=\frac{2 v_{y 0}}{g} \\ t_{\max }=t_{2}=\frac{2 v_{y 0}}{g}=\frac{2(v \sin (\theta))}{g} \end{gathered}$
Substitute	$t_{\max }=\frac{2\left(40 \sin \left(30^{\circ}\right)\right)}{9.8}=4.08 \mathrm{~s}$
Box Answer	(3) $t_{\max }=4.08 \mathrm{~s}$ Time the cannon ball was in the air

Solve	$x_{\text {max }}=v_{x 0} t_{\text {max }}=v \cos (\theta) t_{\text {max }}$	$\begin{gathered} y_{\max }=y\left(t_{1}\right)=y\left(\frac{1}{2} t_{\max }\right) \\ y_{\max }=40 \sin \left(30^{\circ}\right)\left(\frac{1}{2} t_{\max }\right)-4.9\left(\frac{1}{2} t_{\max }\right)^{2} \end{gathered}$
Substitute	$x_{\max }=40 \cos \left(30^{\circ}\right) 4.08=141.3 \mathrm{~m}$	$\begin{gathered} y_{\max }=40 \sin \left(30^{\circ}\right)\left(\frac{4.08}{2}\right)-4.9\left(\frac{4.08}{2}\right)^{2} \\ =20.41 \mathrm{~m} \end{gathered}$
Box Answer	(4) $x_{\max }=141.3 \mathrm{~m}$ Farthest distance the cannon ball travelled	$y_{\max }=20.41 \mathrm{~m}$ Highest distance the cannon ball travelled

