Harold's Physics of Projectiles "Cheat Sheet"

26 November 2017

The Classic Cannon Ball Problem				
Diagram		$= Y = Y_0 + V_V t + \frac{1}{2} g t^2$ $V = Y_0 + V_H t + \frac{1}{2} g t^2$ $V = X = X_0 + V_H t + \frac{1}{2} g t^2$		
Givens	$v = 40 \frac{m}{s}$ $\theta = 30^{\circ}$ Degrees inclined from horizontal			
Unknowns	Horizontal (x-axis) 1 How far is it at time t ? $(x(t))$ 4 How far will it land? (x_{max}) 3 When will	Vertical (y-axis)2How high is it at time t ? $(y(t))$ 5How high will it go? (y_{max}) I it land? (t_{max})		
Observations	Notes: • Subscripts are dimensions, time, or both. Examples: • v_x is the velocity in the x direction. • x_0 is the initial horizontal position, or horizontal position at time = 0 s. • v_{y0} is the initial velocity in the y direction (vertical) • Horizontal and vertical dimensions are orthogonal (independent from one another). • Assume no wind resistance (drag). If we factored in wind resistance, then differential calculus is needed. • The cannon ball will reach its highest point exactly half way through its journey. $[t_1 \text{ and } x_1]$ $x_0 = 0, x_1 = \frac{1}{2}x_2, x_2 = x_{max}$ $v_x = v_{x0} = v_{x1} = v_{x2} = constant$ $a_x = 0$ $y_0 = 0, y_1 = y_{max}, y_2 = 0$ $v_{y0} = ?, v_{y1} = 0, v_{y2} = -v_{y0}$ $a_y = g = -9.8 \frac{m}{s^2}$			
Equations	$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	$y = y_0 + v_{y_0}t + \frac{1}{2}a_yt^2$		
	$v_x = \boldsymbol{v}\cos(\theta)$	$v_y = v \sin(\theta)$		

	Horizontal (x-axis)	Vertical (y-axis)
S olve	$x = \frac{x_0 + v_{x0}t + \frac{1}{2}a_x t^2}{x = v_{x0}t}$	$y = \frac{y_0}{y_0} + v_{y_0}t - \frac{1}{2}gt^2$ $y = v_{y_0}t - \frac{1}{2}gt^2$
	$x(t) = v_{x0}t = v\cos(\theta) t$	$y(t) = v \sin(\theta) t - \frac{1}{2}gt^2$
S ubstitute	$x(t) = 40 \cos(30^\circ) t m$	$y(t) = 40 \sin(30^\circ) t - 4.9 t^2 m$
Box Answer	$1 \mathbf{x}(t) = 40 \cos(30^\circ) t \ m$	$2 y(t) = 40 \sin(30^\circ) t - 4.9 t^2 m$
Box Answer	$1 x(t) = 40 \cos(30^{\circ}) t m$ Distance travelled	$2 y(t) = 40 \sin(30^\circ) t - 4.9 t^2 n$ Height travelled

We are now ready to solve for all 5 unknowns in the order 1,2,3,4,5.

S olve	$y(t_0) = y_0 = 0 = v_{y0}t - \frac{1}{2}gt^2$ $(t)\left(v_{y0} - \frac{1}{2}gt\right) = 0$ $t = t_0 = 0, t = t_2 = \frac{2v_{y0}}{g}$ $t_{max} = t_2 = \frac{2v_{y0}}{g} = \frac{2(v\sin(\theta))}{g}$	
S ubstitute	$t_{max} = \frac{2(40 \sin(30^{\circ}))}{9.8} = 4.08 s$	
Box Answer	3 $t_{max} = 4.08 s$ Time the cannon ball was in the air	

Solve	$x_{max} = v_{x0} t_{max} = \boldsymbol{v} \cos(\theta) t_{max}$	$y_{max} = y(t_1) = y\left(\frac{1}{2}t_{max}\right)$ $y_{max} = 40 \sin(30^\circ)\left(\frac{1}{2}t_{max}\right) - 4.9\left(\frac{1}{2}t_{max}\right)^2$
S ubstitute	$x_{max} = 40 \cos(30^{\circ}) 4.08 = 141.3 m$	$y_{max} = 40\sin(30^{\circ})\left(\frac{4.08}{2}\right) - 4.9\left(\frac{4.08}{2}\right)^2$ $= 20.41 m$
Box Answer	• $x_{max} = 141.3 m$ Farthest distance the cannon ball travelled	$5 \mathbf{y}_{max} = 20.41 m$ Highest distance the cannon ball travelled