Harold's Physics of Forces

"Cheat Sheet"
19 April 2016

The Classic Force on an Incline Problem

Diagram			
Givens	$\begin{array}{ll} m=100 \mathrm{~kg} & \text { Mass } \\ \theta=30^{\circ} & \text { Degrees inclined from horizontal } \end{array}$		
	$v=0$	$v=$ constant	$a=$ constant
	$\mu_{s}=0.30$ Static coefficient of friction (not moving) (0,1]	$\mu_{k}=$ Kinetic coefficient of friction (moving) [0, 1)	$\mu_{k}=0.20$
Unknowns	$F_{f_{s}}=\ldots N$	$\mu_{k}=$	$a=\ldots \mathrm{m} / \mathrm{s}^{2}$
Observations	$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$		
Equations	$\sum F_{y}=F_{N}-F_{g_{y}}=0$	$\sum F_{x}=F_{g_{x}}-F_{f_{k}}=0$	$\sum F_{x}=F_{g_{x}}-F_{f_{k}}=F_{a}$
	$\text { Since } \begin{aligned} v= & 0: \\ & F_{g_{x}}<F_{f_{s}} \end{aligned}$	Since $v=$ constant : $F_{g_{x}}=F_{f_{k}}$	Since $a=$ constant : $F_{a}=F_{g_{x}}-F_{f_{k}}$
Solve	$\begin{gathered} F_{g}=m g \\ F_{N}=F_{g_{y}} \\ F_{N}=F_{g} \cos (\theta)=m g \cos (\theta) \\ F_{g_{x}}<F_{f_{s} \max } \\ F_{g_{x}}=F_{g} \sin (\theta)=m g \sin (\theta) \\ F_{f_{s}}=\mu_{s} F_{N}=\mu_{s} m g \cos (\theta) \end{gathered}$	$\begin{gathered} F_{g_{x}}=F_{f_{k}} \\ F_{g_{x}}=F_{g} \sin (\theta)=m g \sin (\theta) \\ F_{f_{k}}=\mu_{k} F_{g_{y}}=\mu_{k} m g \cos (\theta) \\ m g \sin (\theta)=\mu_{k} m g \cos (\theta) \\ \mu_{k}=\tan (\theta) \end{gathered}$	$\begin{gathered} F_{a}=m a \\ F_{g_{x}}=F_{g} \sin (\theta)=m g \sin (\theta) \\ F_{f_{k}}=\mu_{k} F_{N}=\mu_{k} m g \cos (\theta) \\ F_{a}=F_{g_{x}}-F_{f_{k}} \\ m a \\ =m g \sin (\theta)-\mu_{k} m g \cos (\theta) \\ a=g\left[\sin (\theta)-\mu_{k} \cos (\theta)\right] \end{gathered}$
Substitute	$\begin{aligned} & F_{g_{x}}=(100)(9.8) \sin \left(30^{\circ}\right) \\ & =490 \mathrm{~N} \\ & F_{f_{s} \max } \\ & =(0.30)(100)(9.8) \cos \left(30^{\circ}\right) \\ & =509 \mathrm{~N} \end{aligned}$	$\mu_{k}=\tan \left(30^{\circ}\right)=0.577$	$\begin{aligned} & a \\ & =(9.8)\left[\sin \left(30^{\circ}\right)\right. \\ & \left.-(0.20) \cos \left(30^{\circ}\right)\right]=3.2 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$
Box \& Check Your Answer	$\begin{array}{r} F_{f_{s}}=490 \mathrm{~N} \\ 490 \mathrm{~N}<509 \mathrm{~N} \end{array}$	$\begin{gathered} \mu_{k}=0.577 \\ 0.577<1.0 \\ \hline \end{gathered}$	$a=3.2 \mathrm{~m} / \mathrm{s}^{2}$

