Harold's Physics Doppler Effect "Cheat Sheet"

19 April 2016

Doppler Effect – Sound					
Diagram	Low Frequency High Frequency T T T T T T T T T T T T T				
$f = frequency (pitch)of sound wave$ $v = speed of sound in the medium$ $[343.2 m/s; 1,126 ft/s; 1,236 km/h; 768 mph]$ $v_s = speed of the sound source$ $v_r = speed of the listener / receiver$	Source Velocity (v_s)	Receiver Velocity (v_r)	Observed Frequency Equation		
Source and receiver are both stationary	•	•	$f_r = f_s$		
Source moving away from the receiver	~	•	$f_r = f_s \left(\frac{v}{v + v_s}\right)$		
Source moving towards the receiver	\rightarrow	•	$f_r = f_s \left(\frac{v}{v - v_s}\right)$		
Receiver moving towards the source	•	÷	$f_r = f_s\left(\frac{\nu + \nu_r}{\nu}\right)$		
Receiver moving away from the source	•	\rightarrow	$f_r = f_s \left(\frac{v - v_r}{v}\right)$		
General Equation	$\leftarrow \rightarrow$	\leftrightarrow	$f_r = f_s \left(\frac{v \pm v_r}{v \mp v_s}\right)$		
Tip: Towards use top sign, away use bottom sign Pick sign so observed frequency increases when towards (big numerator, small denominator)					

Doppler Effect – Light					
light red shifted rotating star	BLUESHIFT		REDSHIFT		
f = frequency of light wave at the source c = speed of light v = speed difference between two objects	Source Velocity Relative to Receiver (<i>v</i>)	Receiver Velocity (0)	Observed Frequency Equation		
Both objects are moving at the same velocity	•	•	$f_r = f_s$		
Redshift: Source object moving away from the earth	~	•	$\bullet f_{red} = f_s\left(\frac{c}{c+v}\right)$		
Blueshift: Source object moving towards the earth	\rightarrow	•	$\bullet f_{blue} = f_s\left(\frac{c}{c-v}\right)$		
$f = \frac{c}{\lambda}$	$\lambda = rac{c}{f}$				
λ = wavelength of light wave at the source c = speed of light v = speed difference between two objects	Source Velocity Relative to Receiver (<i>v</i>)	Receiver Velocity (0)	Observed Wavelength Equation		
Both objects are moving at the same velocity	•	•	$\lambda_r = \lambda_s$		
Redshift: Source object moving away from the earth	~	•	$\lambda_{red} = \lambda_s \left(\frac{c+v}{c}\right)$		
Blueshift: Source object moving towards the earth	\rightarrow	•	$\lambda_{blue} = \lambda_s \left(\frac{c-v}{c}\right)$		