Harold's Modular Arithmetic
 Cheat Sheet

22 October 2022

Modular Arithmetic

Property	Condition (if)	Formula (then)
Visualization	24-Hour Clock	(mod 26)
Variables	$\begin{gathered} m=\text { modulus }(+ \text { int }) \\ r, n=\text { residue or remainder (}+ \text { int }) \end{gathered}$	$a, b=$ integers $q, k=$ quotient or multiples of (int)
Modulus	$b=q m+r$	$b \bmod m \equiv r$
	$b=k m+n$	$b \bmod m \equiv n$
	$\boldsymbol{a} \equiv \boldsymbol{b} \quad(\boldsymbol{\operatorname { m o d m }})$	$\boldsymbol{a m o d} \boldsymbol{m} \equiv \boldsymbol{b} \boldsymbol{\operatorname { m o d } m}$
	b MOD m	Integers ror n
	b DIV m	Integers q or k
Congruence	$\begin{array}{ll} & \equiv \\ a \equiv b & (\bmod m) \\ \hline \end{array}$	$\begin{aligned} & a \bmod m=n \\ & b \bmod m=n \end{aligned}$
	$\begin{aligned} & \frac{a-b}{m}=n \\ & m \mid(a-b) \end{aligned}$	a and b have the same remainder when divided by $\mathrm{m} . \mathrm{n}$ is an integer. m divides $\mathrm{a}-\mathrm{b}$.
The congruence relation satisfies all the conditions of an equivalence relation:		
Reflexivity	$a \equiv a(\bmod m)$	
Symmetry	$b \equiv a(\bmod m)$ for all $\mathrm{a}, \mathrm{b}, \mathrm{and} \mathrm{n}$	$a \equiv b(\bmod m)$
Transitivity	$\begin{aligned} a & \equiv b(\bmod m) \\ b & \equiv c(\bmod m) \end{aligned}$	$a \equiv c(\bmod m)$

Identities

Property	Condition (if)	Formula (then)
Addition	$a+b=c$	$a \bmod m+b \bmod m \equiv c \bmod m$
Computing	$[(a \bmod m)+(b \bmod m)] \bmod m=[a+b] \bmod m=c \bmod m$	
Translation	$a \equiv b \quad(\bmod m)$	$\begin{gathered} a+k \equiv b+k \quad(\bmod m) \\ \text { for any integer } k \end{gathered}$
Combining	$\begin{array}{ll} \hline a \equiv b & (\bmod m) \\ c \equiv d & (\bmod m) \\ \hline \end{array}$	$a+c \equiv b+d \quad(\bmod m)$
Subtraction	$a-b=c$	$a \bmod m-b \bmod m \equiv c \bmod m$
Negation	$a \equiv b \quad(\bmod m)$	$-a \equiv-b \quad(\bmod m)$
Multiplication	$a \cdot b=c$	$a \bmod m \cdot b \bmod m \equiv c \bmod m$
Computing	$[(a \bmod m)(b \bmod m)] \bmod m=[a b] \bmod m=c \bmod m$	
Scaling	$a \equiv b \quad(\bmod m)$	$\begin{array}{ll} k a \equiv k b & (\bmod m) \\ k a \equiv k b & (\bmod k m) \\ \hline \end{array}$
Combining	$\begin{array}{ll} \hline a \equiv b & (\bmod m) \\ c \equiv d & (\bmod m) \end{array}$	$a c \equiv b d \quad(\bmod m)$
Division	$\operatorname{gcd}(k, m)=1$ (Meaning k and m are coprime) $k a=k b \quad(\bmod m)$	$a \equiv b \quad(\bmod m)$
	$\frac{a}{e}=\frac{b}{e}\left(\bmod \frac{m}{\operatorname{gcd}(m, e)}\right)$	where e is a positive integer that divides a and b
	$a \equiv b(\bmod m)$	$a^{k} \equiv b^{k}(\bmod m)$
Exponentiation	Example: Find the last digit of 17^{17} $\begin{aligned} & 17^{17}(\bmod 10) \\ & \equiv\left(7^{2}\right)^{8} \cdot 7(\bmod 10) \\ & \equiv(49)^{8} \cdot 7(\bmod 10) \\ & \equiv(9)^{8} \cdot 7(\bmod 10) \\ & \equiv\left(9^{2}\right)^{4} \cdot 7(\bmod 10) \\ & \equiv(81)^{4} \cdot 7(\bmod 10) \\ & \equiv(1)^{4} \cdot 7(\bmod 10) \\ & \equiv 7(\bmod 10) \end{aligned}$ Hence, the last digit of $17^{17}=7$	The exponentiation property only works on the base. For powers, use Euler's theorem.
Multiplicative Inverse modn	$a \cdot a^{-1} \equiv 1 \quad(\bmod m)$ $\operatorname{gcd}(a, m)=1$ (a and m are relatively prime) $\begin{gathered} 1 \leq a, a^{-1} \leq m+1 \\ m \geq 2 \end{gathered}$	a^{-1} is a multiplicative inverse of $a \bmod m$
	Example: Solve for x in $2 \mathrm{x} \equiv 3(\bmod 5)$ To find the inverse first solve for r : If $2 \cdot r \equiv 1(\bmod 5)$ then $r=3$. So, the multiplicative inverse of 2 is 3 with $(\bmod 5)$. Since $r=a^{-1}$ and $a^{-1} a x \equiv x(\bmod m)$, then $(2)(3) x \equiv 6 x \equiv x(\bmod 5)$.	
	p is prime $0<a<p$	$a^{-1} \equiv a^{p-2}(\bmod p)$

Theorems

Theorem	Condition (if)	Formula (then)
Greatest Common Divisor (GCD)	$\operatorname{gcd}(x, y)=p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}} \cdot p_{2}^{\min \left\{\alpha_{2}, \beta_{2}\right\}} \cdot p_{k}^{\min \left\{\alpha_{k}, \beta_{k}\right\}}$ Largest positive integer that is a factor of both x and y . Think Intersection (\cap) of α_{i}, β_{i}.	
GCD Theorem	x and y are positive integers where $x<$ y	$\operatorname{gcd}(x, y)=\operatorname{gcd}(y \bmod x, x)$
Euclid's Algorithm	```if (\(\mathrm{y}<\mathrm{x}\)) Swap (\(\mathrm{x}, \mathrm{y}\)); \(r=y \bmod x ;\) while \((r \neq 0)\) \{ \(y=x ;\) \(\mathrm{x}=\mathrm{r}\); \(r=y \bmod x ;\) \} return (x);```	$\operatorname{gcd}(x, y)=x_{i}$
Example	$\operatorname{gcd}(675,210)=15$ $675 \quad 210$	$\begin{array}{cc} \begin{array}{c} y \\ 30 \end{array} & \begin{array}{c} x \\ 15 \end{array} \\ 0 \end{array}$
Extended Euclidean Theorem	Let x and y be integers, then there are integers s and t such that	$\operatorname{gcd}(\mathrm{x}, \mathrm{y})=s \mathrm{x}+\mathrm{ty}$
Extended Euclidean Algorithm	$\begin{aligned} & r=y \bmod x \\ & r=y-(y \operatorname{div} x) \cdot x \\ & 15=45-(45 \operatorname{div} 30) \cdot 30 \\ & 15=45-1 \cdot 30 \end{aligned}$ Slide [y x r] window left $\begin{aligned} & 30=210-(210 \operatorname{div} 45) \cdot 45 \\ & 30=210-4 \cdot 45 \end{aligned}$ Slide [y x r] window left $45=675-3 \cdot 210$ Back substitute green into red $\operatorname{gcd}(675,210)=15=5 \cdot 675-16 \cdot 210$ Output Format: sx + ty	Example: $\operatorname{gcd}(675,210)=15$ Do Euclid's Algorithm first, Saving intermediate results. Start with sliding window on right. $\begin{array}{ccccc} & \ll & {[y} & x & r] \\ 675 & 210 & 45 & 30 & 15 \end{array}$
Multiplicative Inverses	$\operatorname{gcd}(\mathrm{x}, \mathrm{y})=s \mathrm{x}+\mathrm{ty}$	$\begin{aligned} & s=x^{\prime} s \text { inverse } \bmod y \\ & t=y^{\prime} s \text { inverse mod } x \end{aligned}$
	p is prime a is an integer not divisible by p	$\begin{array}{cc} a^{p-1} \equiv 1 & (\bmod p) \\ a^{p} \equiv a & (\bmod p) \\ \hline \end{array}$
Fermat's Little Theorem	$\begin{aligned} & \text { Example: Find } 7^{222} \bmod 11 \\ & \text { Since } 7^{10} \equiv 1 \quad(\bmod 11) \\ & \text { and }\left(7^{10}\right)^{k} \equiv 1 \quad(\bmod 11) \\ & 7^{222}=7^{22.10+2}=\left(7^{10}\right)^{22} \cdot 7^{2} \\ & \equiv(1)^{22} \cdot 49 \\ & \equiv 5(\bmod 11) \end{aligned}$ Hence, $7^{222} \bmod 11=5$	

Euler's Theorem	$c \equiv d(\bmod \varphi(n))$ where ϕ is Euler's totient function	$a^{c} \equiv a^{d}(\bmod n)$ provided that a is coprime with n
	a and m are coprime	$a^{\varphi(n)} \equiv 1(\bmod m)$ where ϕ is Euler's totient function
Euler's Totient Function	$\phi(\mathrm{n})=$ number of integers $\leq \mathrm{n}$ that do not share any common factors with n	
Wilson's Theorem	p is prime if and only if $(p-1)!\equiv-1(\bmod p)$	
Linear Congruence	$a x \equiv b \quad(\bmod m)$	Solutions are all integers x that satisfy the congruence
Chinese Remainder Theroem	$m_{1}, m_{2}, \ldots, m_{n}$ are pairwise relatively prime positive integers > 1 $a_{1}, a_{2}, \ldots, a_{n}$ are arbitrary integers	$\begin{aligned} & x \equiv a_{1}\left(\bmod m_{1}\right) \\ & x \equiv a_{2}\left(\bmod m_{2}\right) \\ & \ldots \\ & x \equiv a_{n}\left(\bmod m_{n}\right) \end{aligned}$ has a unique solution modulo $\mathrm{m}=$ $m_{1} m_{2} \cdots m_{n}$. (Meaning $0 \leq x<m$ and all other solutions are congruent (\equiv) modulo m to this solution.)
Legrange's Theorem	The congruence $f(x) \equiv 0(\bmod p)$, where p is prime, and $f(x)=a_{0} x^{n}+\ldots+a^{n}$ is a polynomial with integer coefficients such that $a_{0} \neq 0(\bmod p)$, has at most n roots.	
Primitive Root Modulo m	A primitive root modulo m exists if and only if n is equal to $2,4, p^{k}$ or $2 p^{k}$, where p is an odd prime number and k is a positive integer. If a primitive root modulo m exists, then there are exactly $\varphi(\varphi(m))$ such primitive roots, where ϕ is the Euler's totient function.	

Sources:

- SNHU MAT 260 - Cryptology, Invitation to Cryptology, $1^{\text {st }}$ Edition, Thomas Barr, 2001.
- SNHU MAT 230 - Discrete Mathematics, zyBooks.
- https://brilliant.org/wiki/modular-arithmetic/
- https://en.wikipedia.org/wiki/Modular arithmetic
- https://artofproblemsolving.com/wiki/index.php/Modular arithmetic/Introduction

