Harold's Modular Arithmetic Cheat Sheet 22 October 2022

Modular Arithmetic

Property	Condition (if)	Formula (then)
Visualization	24-Hour Clock 11 12 1 10,22 24 13 2 9 21 15 3 8 20 16 4 7 6 5	(mod 26) $25 26 27$ $24 -1 0 1 2$ $23 -2 -1 0 1 2$ $23 -2 -1 0 1 2$ $24 -2 -1 0 1 2$ $23 -2 -1 0 1 2$ $24 -2 -1 0 1 2$ $24 -2 -1 0 1 2$ $24 -2 -1 0 1 2$ $24 -2 -2 -1 0 1 2$ $25 -2 -1 2 3 4$ $-2 -2 -1 0 1 2$ $-2 -1 0 1 2 3$ $-2 -2 -1 0 1 2$ $-2 -2 -1 0 1 2$ $-2 -2 -1 0 1 2$ $-2 -2 -1 0 1 2$ $-2 -2 -1 0 1 2$ $-2 -2 -2 -2 -2 -2 -2 -2$
Variables	<i>m</i> = modulus (+ int) <i>r, n</i> = residue or remainder (+ int)	<i>a, b</i> = integers <i>q, k</i> = quotient or multiples of (int)
Modulus	$b = qm + r$ $b = km + n$ $a \equiv b \pmod{m}$ $b \operatorname{MOD} m$ $b \operatorname{DIV} m$	$b \mod m \equiv r$ $b \mod m \equiv n$ $a \mod m \equiv b \mod m$ Integers r or n Integers q or k
Congruence		$a \mod m = n$ $b \mod m = n$ $a \mod b$ have the same remainder when divided by m. n is an integer. m divides a – b.
The congruence relation satisfies all the conditions of an <u>equivalence relation</u> :		
Reflexivity	$a \equiv a \pmod{m}$	
Symmetry	$b \equiv a \pmod{m}$ for all a, b, and n	$a \equiv b \pmod{m}$
Transitivity	$a \equiv b \pmod{m}$ $b \equiv c \pmod{m}$	$a \equiv c \; (mod \; m)$

Identities

Property	Condition (if)	Formula (then)	
Addition	a+b=c	$a \mod m + b \mod m \equiv c \mod m$	
Computing	$[(a \mod m) + (b \mod m)] \mod m = [a + b] \mod m = c \mod m$		
Translation	$a \equiv b \pmod{m}$	$a+k \equiv b+k \pmod{m}$	
	. ,	for any integer k	
Combining	$a \equiv b \pmod{m}$	$a + c \equiv b + d \pmod{m}$	
-	$c \equiv d \pmod{m}$	× ,	
Subtraction	a-b=c	$a \mod m - b \mod m \equiv c \mod m$	
Negation	$a \equiv b \pmod{m}$	$-a \equiv -b \pmod{m}$	
Multiplication	$a \cdot b = c$	$a \mod m \cdot b \mod m \equiv c \mod m$	
Computing	$[(a \mod m)(b \mod m)] \mod m = [ab] \mod m = c \mod m$		
Scaling	$a \equiv b \pmod{m}$	$ka \equiv kb \pmod{m}$	
		$ka \equiv kb \pmod{km}$	
Combining	$a \equiv b \pmod{m}$	$ac \equiv bd \pmod{m}$	
	$c \equiv d \pmod{m}$. ,	
	gcd(k,m) = 1		
	(Meaning k and m are coprime)	$a \equiv b \pmod{m}$	
Division	$ka = kb \pmod{m}$		
	$\frac{a}{e} = \frac{b}{e} \left(mod \ \frac{m}{gcd \ (m, e)} \right)$	where e is a positive integer that divides	
		a and b	
	$a \equiv b \pmod{m}$	$a^k \equiv b^k \; (mod \; m)$	
	Example: Find the last digit of 17^{17}		
	$17^{17} \pmod{10}$		
	$\equiv (7^2)^8 \cdot 7 \pmod{10}$		
	$\equiv (49)^8 \cdot 7 \pmod{10}$	The exponentiation property only works	
Exponentiation	$\equiv (9)^8 \cdot 7 \ (mod \ 10)$	on the base.	
	$\equiv (9^2)^4 \cdot 7 \pmod{10}$		
	$\equiv (81)^4 \cdot 7 \pmod{10}$	For powers, use Euler's theorem.	
	$\equiv (1)^4 \cdot 7 \ (mod \ 10)$		
	$\equiv 7 \pmod{10}$		
	Hence, the last digit of $17^{17} = 7$		
	$a \cdot a^{-1} \equiv 1 \pmod{m}$		
	gcd(a,m)=1		
	(a and m are relatively prime)	a^{-1} is a multiplicative inverse of $a \mod m$	
	$1 \le a, a^{-1} \le m + 1$		
	<i>m</i> ≥ 2		
Multiplicative	Example: Solve for x in $2x \equiv 3 \pmod{2}$	5)	
Inverse mod n	To find the inverse first solve for r: If $2 \cdot r \equiv 1 \pmod{5}$ then $r = 3$. So, the multiplicative inverse of 2 is 3 with (mod 5). Since $r = a^{-1}$ and $a^{-1}ax \equiv x \pmod{m}$, then $(2)(3)x \equiv 6x \equiv x \pmod{5}$.		
<i>p</i> is prime			
	0 < a < p	$a^{-1} \equiv a^{p-2} \pmod{p}$	

Theorems

Theorem	Condition (if)	Formula (then)
	$gcd(x,y) = p_1^{\min\{\alpha_1,\beta_1\}} \cdot p_2^{\min\{\alpha_2,\beta_2\}} \cdot p_k^{\min\{\alpha_k,\beta_k\}}$	
Greatest Common Divisor (GCD)	Largest positive integer that is a factor of both x and y. Think Intersection (\cap) of α_i, β_i .	
GCD Theorem	x and y are positive integers where x < y	gcd (x, y) = gcd (y mod x, x)
Euclid's Algorithm	<pre>if (y < x) Swap (x, y); r = y mod x; while (r ≠ 0) { y = x; x = r; r = y mod x; } return (x);</pre>	gcd (x, y) = x _i
Example	gcd(675, 210) = 15 675 210 45	y x r 30 15 0
Extended Euclidean	Let x and y be integers, then there are	gcd(x, y) = sx + ty
Theorem	integers s and t such that	gcu (x, y) – 3x + ty
Extended Euclidean Algorithm	r = y mod x r = y - (y div x) \cdot x 15 = 45 - (45 div 30) \cdot 30 15 = 45 - 1 \cdot 30 Slide [y x r] window left 30 = 210 - (210 div 45) \cdot 45 30 = 210 - 4 \cdot 45 Slide [y x r] window left 45 = 675 - 3 \cdot 210 Back substitute green into red gcd (675, 210) = 15 = 5 \cdot 675 - 16 \cdot 210 Output Format: sx + ty	Example: gcd (675, 210) = 15 Do Euclid's Algorithm first, Saving intermediate results. Start with sliding window on right. << [y x r] 675 210 45 30 15
Multiplicative Inverses	gcd(x, y) = sx + ty	s = x's inverse mod y t = y's inverse mod x
Fermat's Little Theorem	p is prime a is an integer not divisible by p Example: Find $7^{222} \mod 11$ Since $7^{10} \equiv 1 \pmod{11}$ and $(7^{10})^k \equiv 1 \pmod{11}$ $7^{222} = 7^{22 \cdot 10 + 2} = (7^{10})^{22} \cdot 7^2$ $\equiv (1)^{22} \cdot 49$ $\equiv 5 \pmod{11}$ Hence, $7^{222} \mod 11 = 5$	$a^{p-1} \equiv 1 \pmod{p}$ $a^p \equiv a \pmod{p}$

	$c \equiv d \pmod{\varphi(n)}$	$a^c \equiv a^d \pmod{n}$	
Euler's Theorem	where ϕ is Euler's totient function	provided that a is coprime with n	
		$a^{\varphi(n)} \equiv 1 \pmod{m}$	
	a and m are coprime	where ϕ is Euler's totient function	
		where ϕ is Euler's totlent function	
Euler's Totient Function	$\phi(n)$ = number of integers \leq n that do not share any common factors with n		
Wilson's Theorem	p is prime if and only if $(p - 1)! \equiv -1 \pmod{p}$		
Linear Congruence	$ax \equiv b \pmod{m}$	Solutions are all integers x that satisfy the congruence	
		$x \equiv a_1 \pmod{m_1}$	
		$x \equiv a_2 \pmod{m_2}$	
Chinese Remainder	$m_1, m_2,, m_n$ are pairwise relatively prime positive integers > 1	$x \equiv a_n \pmod{m_n}$	
Theroem	prime positive integers > 1	has a unique solution modulo m =	
meroem	a. a. a. are arbitrary integers	$m_1m_2\cdots m_n$.	
	a ₁ , a ₂ ,, a _n are arbitrary integers	(Meaning 0 ≤ x < m and all other	
		solutions are congruent (\equiv) modulo	
		m to this solution.)	
	The congruence $f(x) \equiv 0 \pmod{p}$, where p is prime, and $f(x) = a_0 x^n + \dots + a^n$ is		
Legrange's Theorem	a polynomial with integer coefficients such that $a_0 \neq 0$ (mod p), has at most n		
	roots.		
	A number g is a primitive root modulo m if, for every integer a coprime to m,		
	there is an integer k such that $g^k \equiv a \pmod{m}$.		
Primitive Root	A primitive root modulo m exists if and only if n is equal to 2, 4, p ^k or 2p ^k , where p is an odd prime number and k is a positive integer.		
Modulo m			
	If a primitive root modulo m exists, then there are exactly $\varphi(\varphi(m))$ such		
	primitive roots, where φ is the Euler's totient function.		

Sources:

- <u>SNHU MAT 260</u> Cryptology, Invitation to Cryptology, 1st Edition, Thomas Barr, 2001.
- <u>SNHU MAT 230</u> Discrete Mathematics, zyBooks.
- https://brilliant.org/wiki/modular-arithmetic/
- <u>https://en.wikipedia.org/wiki/Modular_arithmetic</u>
- <u>https://artofproblemsolving.com/wiki/index.php/Modular_arithmetic/Introduction</u>