Harold's Exponential Growth and Decay

Cheat Sheet
16 May 2016

Discrete	Continuous
$A=P\left(1+\frac{r}{n}\right)^{n t}$	$A=P e^{r t}$
Simple Interest: $A=P+I=P+P r t=P(1+r t)$ A = Amount after time t $\mathrm{P}=$ Original amount, such as principle $\mathrm{e}=$ The natural number (~ 2.718) $r=$ Rate of growth/loss, e.g. interest rate $(15 \%=0.15)$ $t=$ Elapsed time $\mathrm{n}=$ Divides time into periods per time unit	$\begin{gathered} e \approx 2.71828182845904523536 \ldots \\ e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \\ A=\lim _{n \rightarrow \infty} P\left(1+\frac{r}{n}\right)^{n t}=P e^{r t} \\ \mathrm{e}=\sum_{i=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\cdots \end{gathered}$
Savings Account Example: $\begin{aligned} & P=\$ 100 \\ & r=8 \%=0.08 \\ & t=1 \text { year } \\ & n=4 \text { (quarterly) } \end{aligned}$ $A=\$ 100\left(1+\frac{0.08}{4}\right)^{4(1)}=\$ 108.24$	Savings Account Example: $A=\$ 100 e^{0.08(1)}=\$ 108.33$ If $\mathrm{n}=1, \quad \mathrm{~A}=\$ 108.00(+0 \$) \quad$ Annually If $n=4, \quad A=\$ 108.24(+24 \Phi)$ Quarterly If $\mathrm{n}=12, \mathrm{~A}=\$ 108.29(+5 \mathrm{q}) \quad$ Monthly If $n=365, A=\$ 108.33(+4 \$) \quad$ Daily If $\mathrm{n}=\boldsymbol{\infty}, \mathrm{A}=\$ 108.33(+0 \$) \quad$ Continuously
$\begin{aligned} & \text { Compounded interest after } 3 \text { years: } \\ & A(3)=P(1+8 \%)(1+8 \%)(1+8 \%) \\ & A(3)=P(1+0.08)^{3}=1.26 * P \end{aligned}$	(See calculus derivation on page 2)
$\begin{gathered} A=P\left(1+\frac{r}{n}\right)^{n t} \\ P=\frac{A}{\left(1+\frac{r}{n}\right)^{n t}} \\ r=n\left[\left(\frac{A}{P}\right)^{1 / n t}-1\right] \\ t=\frac{1}{n} \frac{\ln \left(\frac{A}{P}\right)}{\ln \left(1+\frac{r}{n}\right)} \\ \mathrm{n}=? \end{gathered}$	$\begin{gathered} A=P e^{r t} \\ P=\frac{A}{e^{r t}} \\ r=\frac{1}{t} \ln \left(\frac{A}{P}\right) \\ t=\frac{1}{r} \ln \left(\frac{A}{P}\right) \\ \mathrm{n}=\infty \end{gathered}$

Calculus Derivation

Graphs

Assume the rate of growth or decay is proportional to the amount of substance (P).

$$
\begin{gathered}
\frac{d P}{d t} \propto P \\
\frac{d P}{d t}=k P
\end{gathered}
$$

Separate variables and integrate:

$$
\begin{aligned}
\frac{d P}{P} & =k d t \\
\int \frac{d P}{P} & =\int k d t \\
\ln |P| & =k t+c
\end{aligned}
$$

Solve for $P(t)$:

$$
\begin{gathered}
e^{\ln |P|}=e^{k t+c} \\
|P|=e^{c} e^{k t}=C e^{k t}
\end{gathered}
$$

At $t=0$ (initial condition):

$$
P(0)=C e^{k * 0}=C * 1=P_{0}
$$

Therefore,

$$
\begin{gathered}
P(t)=P_{0} e^{k t} \\
\text { or } \\
A=P e^{r t}
\end{gathered}
$$

Chemistry

Half-Life

A $=$ Amount remaining after time t
$A_{0}=$ Amount starting with at time $t=0$
$T=$ Half Life (time units)
$t=$ time (time units)

Left: Exponential Growth (k or r positive)
Right: Exponential Decay (k or r negative)

$P(t)=P_{0} e^{k t}$
or
$A=P e^{r t}$
Chemistry
C Amount remaining after time t
$A=$ Amount starting with at time $t=0$
$A_{0}=$ Half Life (time units)
$T=$ time (time units)

$$
A=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{T}}
$$

