Harold's Exponential Growth and Decay Cheat Sheet

16 May 2016

Discrete	Continuous
$A = P\left(1 + \frac{r}{n}\right)^{nt}$	$A = Pe^{rt}$
Simple Interest:	e ≈ 2.71828 18284 59045 23536
A = P + I = P + Prt = P(1 + rt)	
A = Amount after time t P = Original amount, such as principle e = The natural number (~2.718) r = Rate of growth/loss, e.g. interest rate (15% = 0.15) t = Elapsed time n = Divides time into periods per time unit	$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$ $A = \lim_{n \to \infty} P \left(1 + \frac{r}{n} \right)^{nt} = P e^{rt}$ $e = \sum_{i=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \cdots$
Savings Account Example:	Savings Account Example:
P = \$100 r = 8% = 0.08 t = 1 year n = 4 (quarterly) $A = $100 (1 + \frac{0.08}{100})^{4(1)} = 108.24	$A = \$100 \ e^{0.08(1)} = \108.33 If n = 1, A = \$108.00 (+0¢) Annually If n = 4, A = \$108.24 (+24¢) Quarterly If n = 12, A = \$108.29 (+5¢) Monthly If n = 365, A = \$108.33 (+4¢) Daily
Compounded interest after 3 years: A(3) = P (1 + 8%) (1 + 8%) (1 + 8%) $A(3) = P(1 + 0.08)^3 = 1.26 * P$	If $n = \infty$, $A = $108.33 (+0¢)$ Continuously (See calculus derivation on page 2)
$A = P\left(1 + \frac{r}{n}\right)^{nt}$ $P = \frac{A}{\left(1 + \frac{r}{n}\right)^{nt}}$ $r = n\left[\left(\frac{A}{p}\right)^{1/nt} - 1\right]$ $t = \frac{1}{n}\frac{\ln(\frac{A}{p})}{\ln\left(1 + \frac{r}{n}\right)}$ $n = ?$	$A = Pe^{rt}$ $P = \frac{A}{e^{rt}}$ $r = \frac{1}{t} \ln\left(\frac{A}{P}\right)$ $t = \frac{1}{r} \ln\left(\frac{A}{P}\right)$ $n = \infty$

Copyright © 2014-2016 by Harold Toomey, WyzAnt Tutor

