Harold's Flip-Flops

Cheat Sheet

13 June 2020

D Flip-Flop (Edge-Triggered)					
Style	NAND-NAND			AND-NOR	
Circuit			$\longrightarrow \mathrm{Q}$		
Symbol		Q Q			
Truth Table	Inputs		Outputs		Action
	D	CLK	$\mathbf{Q}_{\text {next }}$	$Q_{\text {'next }}^{\prime}$	
	0	\uparrow	0	1	Reset ($\mathrm{Q} \rightarrow 0$)
	1	\uparrow	1	0	Set ($\mathrm{Q} \rightarrow$ 1)
Boolean Equation	$Q_{\text {next }}=D$				
Name Origin	D for Delays, since it delays the signal until the next active clock transition				
Observations	- Made with S-R flip-flop with input S inverted for input R - Stores a single bit after the edge-triggered clock pulse				
Applications	- Storing Bits (memory) in a pipeline - Event Detection				
TTL Chips	74x74, 74×79, $74 \times 171,74 \times 173$				

J-K Flip-Flop Applications

Credit: Diagrams taken from "ECPI University EET 230 - Digital Systems II", Wikipedia, and Google images.

