Harold's Boolean Algebra Cheat Sheet

12 September 2021

Boolean Algebra

Boolean Expression	Law or Rule	Equivalent Circuit Description		
A + 1 = 1	Annulment (OR)		A in parallel with closed = "CLOSED"	
$A \bullet 0 = 0$	Annulment (AND)	A 0	A in series with open = "OPEN"	
A + 0 = A	Identity (OR)		A in parallel with open = "A"	
$A \bullet 1 = A$	Identity (AND)	A oo	A in series with closed = "A"	
A + A = A	Idempotent (OR)		A in parallel with A = "A"	
AA = A	Idempotent (AND)	A A	A in series with A = "A"	
$\overline{(\overline{A})} = A$	Double Negation		NOT NOT A (double negative) = "A"	
$A + \overline{A} = 1$	Complement (OR)	A Ā	A in parallel with NOT A = "CLOSED"	
$A\overline{A} = 0$	Complement (AND)	A Ā	A in series with NOT A = "OPEN"	
A + B = B + A	Commutative (OR)		A in parallel with $B = B$ in parallel with A	
AB = BA	Commutative (AND)	A in series with B = B in series		
$\begin{array}{c} A(B+C) \\ = AB + AC \end{array}$	Distributative (OR)		Permits the multiplying or factoring	
A + BC = (A + B)(A + C)	Distributative (AND)		out of an expression	

A + (B + C) = (A + B) + C = A + B + C	Associative (OR)		Allows the removal of brackets from
$ \begin{array}{r} A(BC) \\ = (AB)C \\ = ABC \end{array} $	Associative (AND)		variables
A + (AB) = A	Absorptive (OR)		Enables a reduction in a complicated
A(A+B) = A	Absorptive (AND)		absorbing like terms
$A + \overline{A}B = A + B$	Absorptive (Derived)		Reduces a complicated expression to a simpler one by absorbing compliment term
$\overline{(A+B)} = \overline{A} \bullet \overline{B}$	De Morgan (NC	's Theorem DR)	Invert and replace OR with AND
$\overline{AB} = \overline{A} + \overline{B}$	De Morgan (NA	's Theorem ND)	Invert and replace AND with OR

Source: https://www.electronics-tutorials.ws/boolean/bool 6.html

Boolean Logic Gates

Boolean Logic	Notation	Gate	Description		
IDENTITY	1 T True	VCC 5V V+ ↑ ↑ ↑	On, Tautology, High voltage (typically +5V)		
NULL	0 F ⊥ False	$\stackrel{\text{GND}}{=} \stackrel{\text{GND}}{\longrightarrow} \stackrel{\text{GND}}{\downarrow}$	Off, Contradiction, Low voltage (typically 0V)		
Input	A, B, C, D		Line, Wire, Connects to		
Output	W, X, Y, Z		Line, Wire, Connects from		
AND	A • B AB A. B A∧ B A∧ B A∩ B	B Q	AND, BUT, Multiply, Conjunction, Intersection		
OR	A + B A∨B A∪B A∣B	B D Q	Inclusive-OR, Add, Disjunction, Union		
NOT	$ \begin{array}{c} \overline{A} \\ A^{\wedge} \\ A' \\ \neg A \\ \sim A \\ ! A \end{array} $	AQ	NOT, Invert, Negation, Change, Difference		
NAND	AB A⊼B A B*	B D Q	Not AND		
NOR	$\overline{A + B}$ $A \overline{\nabla} B$ $A \downarrow B$	B D Q	Not OR		
XOR	$A \bigoplus B$ $A \ge B$ $A\overline{B} + \overline{A}B$	A B B	Exclusive-OR, Both A and B are different		
XNOR	$ \begin{array}{c} A \odot B \\ \overline{A \oplus B} \\ AB + \overline{AB} \end{array} $	A B B C C C	Exclusive-NOR, Both A and B are the same		

Boolean Logic Truth Tables

Inp	uts	Outputs								
Α	В	AND •	NAND	OR +	NOR	XOR ⊕	XNOR O	$\frac{\mathbf{NOT}}{\overline{A}}$	VCC 1	GND 0
0	0	0	1	0	1	0	1	A=1	1	0
0	1	0	1	1	0	1	0	A=1	1	0
1	0	0	1	1	0	1	0	A=0	1	0
1	1	1	0	1	0	0	1	A=0	1	0

Blank Truth Tables

Inp	uts	Output
Α	В	Х
0	0	
0	1	
1	0	
1	1	

	Inputs			put
Α	В	С	X	Y
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Inputs				C)utpu	ıt
Α	В	С	D	X	Y	Z
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

Karnaugh Mapping (K-Map)

2-Bit			A
K-N	lap	0	1
р	0		
В	1		

3-1	Bit	AB			
K-Map		00	01	11	10
0					
L	1				

4-Bit		AB				
К-Мар		00	01	11	10	
00						
CD	01					
LD	11					
1	10					
2x2 Group 1x4 Group						

K-Map Rules

- 1) Circle only 1s (ones) and don't cares for Sum of Products (SOP), *e.g.* $\overline{A} \ \overline{B} \ \overline{C} + \overline{ABC} + AB\overline{C}$.
 - a. Circle only 0s (zeros) and don't cares for Product of Sums (POS), *e. g.* $(A + \overline{B})(\overline{A} + B)$.
 - b. Don't cares may be used or ignored.
- 2) No diagonals, only horizontal or vertical connections.
- 3) Group only adjacent cells in groups with powers of 2 (1x1, 1x2, 2x1, 2x2, 2x4, 4x2, 1x4, 4x1).
- 4) Make groups as large as possible.
- 5) Must group <u>all</u> 1s (ones) for SOP or all 0s (zeros) for POS.
- 6) Overlapping is allowed.
- 7) Wrapping around all edges allowed, both top-bottom edges and left-right edges.
- 8) Fewest groups possible (OPTIMAL).
- 9) For each circle, determine which inputs do not contribute to the logic (is both 0 and 1).
- 10) Write down equation as a SOP, *e. g.* $\overline{A} \overline{B} \overline{C} + \overline{A}BC + AB\overline{C}$