Harold's Boolean Algebra

Cheat Sheet

12 September 2021

Boolean Algebra

Boolean Expression	Law or Rule	Annulment (OR)	Annulment (AND)	Identity (OR)
$A \cdot 0=0$	Identity			
$A+0=A$	(AND)			

$A+(B+C)$ $=(A+B)+C$ $=A+B+C$	Associative (OR)		Allows the removal of brackets from an expression and regrouping of the variables
$A(B C)$ $=(A B) C$ $=A B C$	Associative (AND)		Enables a reduction in a complicated expression to a simpler one by absorbing like terms
$A+(A B)=A$	Absorptive (OR)		Reduces a complicated expression to a simpler one by absorbing compliment term
$A(A+B)=A$	Absorptive (AND)	Absorptive (Derived)	Invert and replace OR with AND
$A+\bar{A} B=A+B$	De Morgan's Theorem (NOR)	Invert and replace AND with OR	
$\overline{(A+B)=\bar{A} \bullet \bar{B}}$	De Morgan's Theorem (NAND)		
$\overline{A B}=\bar{A}+\bar{B}$	(An		

Source: https://www.electronics-tutorials.ws/boolean/bool 6.html

Boolean Logic Gates

| Boolean |
| :---: | :---: | :---: | :--- | :--- |
| Logic | Notation

Boolean Logic Truth Tables

Inputs			Outputs								
\mathbf{A}	\mathbf{B}	AND \cdot	NAND	$\mathbf{O R}$ $\mathbf{+}$	NOR \oplus	XNOR \odot	NOT \bar{A}	VCC $\mathbf{1}$	GND $\mathbf{0}$		
$\mathbf{0}$	$\mathbf{0}$	0	1	0	1	0	1	$\mathrm{~A}=1$	1	0	
$\mathbf{0}$	$\mathbf{1}$	0	1	1	0	1	0	$\mathrm{~A}=1$	1	0	
$\mathbf{1}$	$\mathbf{0}$	0	1	1	0	1	0	$\mathrm{~A}=0$	1	0	
$\mathbf{1}$	$\mathbf{1}$	1	0	1	0	0	1	$\mathrm{~A}=0$	1	0	

Blank Truth Tables

Inputs		Output
\mathbf{A}	\mathbf{B}	\mathbf{X}
$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{0}$	$\mathbf{1}$	
$\mathbf{1}$	$\mathbf{0}$	
$\mathbf{1}$	$\mathbf{1}$	

Inputs				Output	
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{X}	\mathbf{Y}	
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$			
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$			
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$			
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$			
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$			
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$			
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$			
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$			

Inputs					Output		
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$				
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$				
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$				
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$				
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$				
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$				
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$				
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$				
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$				
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$				
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$				
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$				
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$				
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$				
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$				
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$				

Karnaugh Mapping (K-Map)

2-Bit K-Map		\mathbf{A}	
	0	1	
\mathbf{B}	0		
	1		

3-Bit			AB			
K-Map	00	01	11	10		
\mathbf{C} C	0					
	1					

4-Bit			AB			
K-Map	00	01	11	10		
$\mathbf{C D}$	00					
	01					
	11					
	10					

K-Map Rules

1) Circle only 1s (ones) and don't cares for Sum of Products (SOP), e.g. $\bar{A} \bar{B} \bar{C}+\bar{A} B C+A B \bar{C}$.
a. Circle only 0s (zeros) and don't cares for Product of Sums (POS), e.g. $(A+\bar{B})(\bar{A}+B)$.
b. Don't cares may be used or ignored.
2) No diagonals, only horizontal or vertical connections.
3) Group only adjacent cells in groups with powers of $2(1 x 1,1 x 2,2 x 1,2 x 2,2 x 4,4 x 2,1 x 4,4 x 1)$.
4) Make groups as large as possible.
5) Must group all 1 s (ones) for SOP or all 0s (zeros) for POS.
6) Overlapping is allowed.
7) Wrapping around all edges allowed, both top-bottom edges and left-right edges.
8) Fewest groups possible (OPTIMAL).
9) For each circle, determine which inputs do not contribute to the logic (is both 0 and 1).
10) Write down equation as a SOP, e.g. $\bar{A} \bar{B} \bar{C}+\bar{A} B C+A B \bar{C}$
