Harold's DiffEq Euler's Method Example

26 January 2022

Problem:

Use Euler's Method with $\mathrm{h}=0.1$ to approximate the solution to the following initial value problem on the interval $1 \leq x \leq 2$.
Compare these approximations with the actual solution $y=-\frac{1}{x}$ by graphing the polygonal-line approximation and the actual solution on the same coordinate system.

$$
y^{\prime}=\frac{1}{x^{2}}-\frac{y}{x}-y^{2}, \quad y(1)=-1
$$

Graph the polygonal-line approximation and the actual solution on the same coordinate system. Choose the correct graph below.
\bigcirc
A.

B.
C.
D.

Solution:

Euler's Method:

$$
\begin{aligned}
& \frac{d y}{d x}=f(x, y) \\
& y\left(x_{0}\right)=y_{0} \\
& y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)
\end{aligned}
$$

Notice that the $3^{\text {rd }}$ equation above is simply the slope equation

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{n+1}-y_{n}}{h} \approx f\left(x_{n}, y_{n}\right)
$$

Givens:

$$
\begin{aligned}
& \mathrm{x}_{0}=1 \\
& \mathrm{y}_{0}=-1 \\
& \mathrm{~h}=0.1 \\
& y^{\prime}=f(x, y)=\frac{1}{x^{2}}-\frac{y}{x}-y^{2}
\end{aligned}
$$

Step 0: $(1,-1)=(x, y)$
Step 1: (1.1, -0.9)

$$
\begin{gathered}
x_{1}=x_{0}+h=1+0.1=1.1 \\
f\left(x_{0}, y_{0}\right)=\frac{1}{\left(x_{0}\right)^{2}}-\frac{y_{0}}{x_{0}}-\left(y_{0}\right)^{2} \\
=f(1,-1)=\frac{1}{1^{2}}-\frac{-1}{1}-(-1)^{2}=1+1-1=1 \\
y_{1}=y_{0}+h f\left(x_{0}, y_{0}\right) \\
y_{1}=-1+(0.1)(1)=-0.9
\end{gathered}
$$

This eliminates solutions A and D.
For A, the y value is not high enough. Also, the point $(1,-1)$ is not on the graph. For D, x_{0} should be at the bottom left corner ($1,-1$). It is too high.

Step 2: (1.2, -0.8240)

$$
\begin{gathered}
x_{2}=x_{1}+h=1.1+0.1=1.2 \\
f\left(x_{1}, y_{1}\right)=\frac{1}{\left(x_{1}\right)^{2}}-\frac{y_{1}}{x_{1}}-\left(y_{1}\right)^{2} \\
=f(1.1,-0.9)=\frac{1}{(1.1)^{2}}-\frac{-0.9}{1.1}-(-0.9)^{2}=0.7602 \\
y_{2}=y_{1}+h f\left(x_{1}, y_{1}\right) \\
y_{2}=-0.9+(0.1)(0.7602)=-0.8240
\end{gathered}
$$

Step 3: (1.3, -0.7538)

$$
\begin{gathered}
x_{3}=x_{2}+h=1.2+0.1=1.3 \\
f\left(x_{2}, y_{2}\right)=\frac{1}{\left(x_{2}\right)^{2}}-\frac{y_{2}}{x_{2}}-\left(y_{2}\right)^{2} \\
=f(1.2,-0.8240)=\frac{1}{(1.2)^{2}}-\frac{-0.8240}{1.2}-(-0.8240)^{2}=0.7021 \\
y_{3}=y_{2}+h f\left(x_{2}, y_{2}\right) \\
y_{3}=-0.8240+(0.1)(0.7021)=-0.7538
\end{gathered}
$$

Step 4: (1.4, -0.6935)

$$
\begin{gathered}
x_{4}=x_{3}+h=1.3+0.1=1.4 \\
f\left(x_{3}, y_{3}\right)=\frac{1}{\left(x_{3}\right)^{2}}-\frac{y_{3}}{x_{3}}-\left(y_{3}\right)^{2} \\
=f(1.3,-0.7538)=\frac{1}{(1.3)^{2}}-\frac{-0.7538}{1.3}-(-0.7538)^{2}=0.6033 \\
y_{4}=y_{3}+h f\left(x_{3}, y_{3}\right) \\
y_{4}=-0.7538+(0.1)(0.6033)=-0.6935
\end{gathered}
$$

... Steps 5-9 ...

Step 9: (2.0, ?)

From the graph below, the approximation points are ABOVE the graph $y=-1 / x$.
Since with B the approximation points are below the actual graph, the solution must be C.
Answer: C

Graph:

