Harold's Algebra Cheat Sheet

10 October 2025

Arithmetic Operations $(+, -, \bullet, \div)$

Property	Equation	Tips
Commutative	$a + b = b + a$ $a \cdot b = b \cdot a$	Reordering does not change the answer
Associative	$(a+b)+c=a+(b+c)$ $(a \cdot b) \cdot c=a \cdot (b \cdot c)$	Regrouping does not change the answer
Distributive	$a(b \pm c) = ab \pm ac$	Extract common terms (a)
Identity	$a + 0 = a$ $a \cdot 1 = a$	No change 0 plus anything = anything 1 times anything = anything
Unity	$\left(\frac{anything}{anything}\right) = 1$	Used often Assuming $anything \neq 0$
Sum (Addition)	a c $ad + bc$	Need a common denominator
Difference (Subtraction)	$\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd}$	$\left(\frac{a}{b}\right)\left(\frac{d}{d}\right) + \left(\frac{c}{d}\right)\left(\frac{b}{b}\right) = \frac{ad + bc}{bd}$
Product (Multiplication)	$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$	Multiply numerator with numerator and denominator with denominator
Quotient (Division)	$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$	Invert and multiply
Cross Multiplication	If $\frac{a}{b} = \frac{c}{d}$ then $ad = bc$	Used often
Variable × Fraction	$a\left(\frac{b}{c}\right) = \frac{ab}{c}$	Set $a = \frac{a}{1}$, then multiply numerator with numerator and denominator with denominator
Variable ÷ Fraction	$\frac{a}{\left(\frac{b}{c}\right)} = \frac{ac}{b}$	Invert $\left(\frac{b}{c}\right)$ then multiply
Distribute Denominator	$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$	$\it c$ divides both sides of the numerator
Swapping Signs	$\frac{a-b}{c-d} = \frac{b-a}{d-c}$	Multiplying both the numerator and denominator by (-1) cancels the negatives
Cancelling Terms	$\frac{ab + ac}{a} = b + c$	Assuming $a \neq 0$
Fraction over a Fraction	$\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)} = \frac{ad}{bc}$	Invert the denominator then multiply
Fraction from Hell	$\frac{\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)}}{\frac{\left(\frac{g}{f}\right)}{\left(\frac{g}{h}\right)}} = \frac{adfg}{bceh}$	$\frac{\left(\frac{\binom{N}{D}}{\binom{D}{N}}\right)}{\left(\frac{\binom{N}{N}}{\binom{N}{D}}\right)} = \frac{NNNN}{DDDD}$

Exponents (a^b)

Property	Equation	Example
Product Rule	$a^n a^m = a^{n+m}$	$a^{3}a^{2} = (a \cdot a \cdot a)(a \cdot a) = a^{3+2} = a^{5}$
Power Rule	$(a^n)^m = a^{nm}$	$(a^{3})^{2} = (a \cdot a \cdot a)(a \cdot a \cdot a) = a^{3 \cdot 2} = a^{6}$
Zero Power	$a^0 = 1$	By definition assuming $a \neq 0$
Negative Powers	$a^{-n} = \frac{1}{a^n}$ $\frac{1}{a^{-n}} = a^n$	$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$
Quotient Rule	$\frac{a^n}{a^m} = a^{n-m} = \frac{1}{a^{m-n}}$	$\frac{2^4}{2^3} = \frac{2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2} = 2^{4-3} = 2^1 = 2$
Product Distribution	$(ab)^n = a^n b^n$	
Quotient Distribution	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	$\left(\frac{1}{2}\right)^3 = \frac{1}{2^3} = \frac{1}{8}$
Fractional Powers	$\overline{a^{\frac{n}{m}}} = \left(\overline{a^{\frac{1}{m}}}\right)^n = (a^n)^{\frac{1}{m}}$	$2^{\frac{3}{4}} = \left(2^{\frac{1}{4}}\right)^{3} = (2^{3})^{\frac{1}{4}}$
Negative Powers	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$	$\left(\frac{1}{2}\right)^{-3} = \left(\frac{2}{1}\right)^3 = 8$
Domain	The domain of a^x is $(-\infty,\infty)$	$\mathbf{y} = 2^{\mathbf{x}}$

Radicals $(\sqrt[n]{a})$

Property	Equation	Example
Fractional Powers	$\sqrt[n]{a} = a^{\frac{1}{n}}$	$\sqrt[3]{2} = 2^{\frac{1}{3}}$
Power Rule (Nested Roots)	$\sqrt[m]{\sqrt[n]{a}} = \sqrt[nm]{a}$	$\sqrt[4]{\sqrt[3]{2}} = \sqrt[3\cdot4]{2} = \sqrt[12]{2}$
Product Distribution	$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$	$\sqrt[3]{14} = \sqrt[3]{2} \sqrt[3]{7}$
Quotient Distribution	$\sqrt[n]{\frac{\overline{a}}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$	$\sqrt[4]{\frac{2}{3}} = \frac{\sqrt[4]{2}}{\sqrt[4]{3}}$
Odd	$\sqrt[n]{a^n} = a$ if n is odd	Odd powers always keep their sign
Even	$\sqrt[n]{a^n} = \pm a$ if n is even	Even roots of even powers can be both positive and negative. Substitute to check if each solution is valid.
Domain	The domain of \sqrt{x} is $x \ge 0$	1 0 1 2 3 4 5 6 7 8 9 10 x-axis

Logarithms ($\log_b x$)

Property	Equa	ation	Example
Definition	$b^y = x \Leftrightarrow$	$\log_b(x) = y$	Pulls the exponent down to level
Example	$5^3 = 125 \iff$	$\frac{\log_b(x) = y}{\log_5(125) = 3}$	Logs make large numbers very small
	Natural log		$ ln(x) = log_e(x) $
	ln = Logarithme	Naturel (French)	where e ≈ 2.718281828
Special Logs	Common log		$\log(x) = \log_{10}(x)$
	Computer science	log	$\log(x) = \log_2(x)$
	Pre-1950 US math	textbooks log	$\log(x) = \log_e(x) = \ln(x)$
Rules	Common	Natural	
Trivial Identities	$\log_b(b) = 1$	ln(e) = 1	$b^1 = b$ $b^0 = 1$
	$\log_b(1) = 0$	ln(1) = 0	~ -
Cancelling	$\frac{\log_b(b^x) = x}{b^{\log_b(x)} = x}$	$ln(e^x) = x$	Inverse function $f(f^{-1}(x)) = x$
Exponentials	$b^{\log_b(x)} = x$	$e^{\ln(x)} = x$	Inverse function $f^{-1}(f(x)) = x$
	$\log_b(x^r) = \log_b(\sqrt[r]{x}) =$	$= r \log_b(x)$	$(a^n)^m = a^{nm}$
Exponential Rule	$\log_{1}\left(\frac{y}{\sqrt{x}}\right)$	$\frac{1}{-\log_{1}(x)}$	Convert $\sqrt[y]{x}$ to $x^{\frac{1}{y}}$ first
	1086(\x)	y	·
Product Rule	$\log_h(xy) = \log_h(xy)$	$f_{k}(x) + \log_{k}(y)$	$a^n a^m = a^{n+m}$
Troduct Naic	1080(00)		Basis of slide rules
Quotient Rule	$\log_b\left(\frac{x}{y}\right) = \log_b\left(\frac{x}{y}\right)$	$b(x) - \log_b(y)$	$\frac{a^n}{a^m} = a^{n-m}$
	$\log_a(b) = \frac{\log_c(b)}{\log_c(a)}$ $\log_b a = \frac{1}{\log_a b}$ $x^{\log_b y} = y^{\log_b x}$		-
Change of Base	$\log_a(b) =$	$=\frac{\log_c(v)}{\log_c(v)}$	c is the new base
		$\frac{\log_c(a)}{1}$	TI-84: [MATH] [MATH] [A:logBASE(]
Base Switch	$\log_b a =$	$=\frac{1}{\log x}$	Can use instead of TI-84 function
	log, v	log _a D	
	χ^{108b}	$= y^{\log_{\theta} x}$	
Obscure Rules		l (-)	Useful in probability theory
Obscure Rules	$\log_b(a \pm c) = 1$		oserar in probability theory
		$+\log_b\left(1\pm\frac{c}{a}\right)$	
			y
			$1 - \ln(x)$
			$-\log(x)$
Domain	The domain of l	$\log_{x}(x)$ is $x > 0$	0 1 2 3 x
Domain	The domain of i	$OS_b(x)$ is $x > 0$	
			-1
			/
			-2 - 1

Factoring Formulas

Description	Equation	Notes
Quadratic	$x^{2} + a^{2} = (x + ai) (x - ai)$ $x^{2} - a^{2} = (x + a) (x - a)$ $(x + a)^{2} = x^{2} + 2ax + a^{2}$ $(x - a)^{2} = x^{2} - 2ax + a^{2}$ $(x + a) (x + b) = x^{2} + (a + b)x + ab$ $(x - a) (x - b) = x^{2} - (a + b)x + ab$	For L First Outer Inner Last $(2x + 3)(4x - 5)$ $(2x)(4x) + (2x)(-5) + (3)(4x) + (3)(-5)$ $8x^{2} - 10x + 12x - 15$ $8x^{2} + 2x - 15$
Cubic	$(x+a)^3 = x^3 + 3ax^2 + 3a^2x + a^3$ $(x-a)^3 = x^3 - 3ax^2 + 3a^2x - a^3$ $x^3 + a^3 = (x+a)(x^2 - ax + a^2)$ $x^3 - a^3 = (x-a)(x^2 + ax + a^2)$ $x^{2n} + a^{2n} = (a^n - ix^n)(a^n + ix^n)$	Binomial expansion (Pascal's Triangle) Notice one '-' and two '+' for both
Even Powers		The top equation is not often used since it requires imaginary numbers (i)
Odd Powers	$x^{n} + a^{n} = (x + a) (x^{n-1} - ax^{n-2})$ $x^{n} - a^{n} = (x - a) (x^{n-1} + ax^{n-2})$	since it requires imaginary numbers (i) $a^{2} + a^{2}x^{n-3} - \dots - a^{n-2}x + a^{n-1})$ $a^{2} + a^{2}x^{n-3} + \dots + a^{n-2}x + a^{n-1})$
End-Terms Method	$2x^2 + 13x + 15$	$(2x \pm 3 5) (x \pm 5 3)$ Four possibilities to get middle-term: 1. +3 Select one 3 23 3. +5 Select one 5 45
Box Method	$2x^{2} + 13x + 15$ $2x^{2} / 10x / 15$ $3x 15$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Visual Method	$(a+b)^2 = a^2 +$ $(a+b)^3 = a^3 + 3a^3$	$2ab + b^2$ $a^2b + 3ab^2 + b^3$

Copyright © 2024-2025 by Harold Toomey, WyzAnt Tutor

Quadratic Formula (x²)

Description	Equation	Notes
Quadratic Formula Form	$ax^2 + bx + c = 0$	Remember, b and c can be negative.
Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	• $\sqrt{b^2 - 4ac} > 0$: two real unequal roots • $\sqrt{b^2 - 4ac} = 0$: repeated real roots (multiplicity of two) • $\sqrt{b^2 - 4ac} < 0$: two complex roots
Completing the Square	2. Divide both sides x 3. Subtract the cons 4. Cut the middle te $x^2 + \left(\frac{b}{a}\right)$ 5. Use an identity to $a^2 - \left[x + \left(\frac{b}{2}\right)\right]$ 6. Take the square results to the right	adratic formula form $ax^2 + bx + c = 0$ by a $a^2 + \left(\frac{b}{a}\right)x + \left(\frac{c}{a}\right) = 0$ tant on the left to move it to the right side $x^2 + \left(\frac{b}{a}\right)x = -\left(\frac{c}{a}\right)$ rm in half, square it, then add it to both sides $x + \left(\frac{b}{2a}\right)^2 = -\left(\frac{c}{a}\right) + \left(\frac{b}{2a}\right)^2$ of factor the left side $x^2 + \left(\frac{b}{2a}\right)^2 - \left(\frac{c}{a}\right) \left(\frac{4a}{4a}\right)$
Vertex	Vertex: $x = -b/2a$ Finds the minimum / maximum of a parabola. $\frac{d}{dx}[cx^n] = cnx^{n-1}$ Calculus method: Power Rule	
y 4 3- 2- 1- 1- 1- 1- 1- 2- No x-intercept	y 4 3- 2- 1- 1- 1- 2- 1- 2- 1- 2- 1- 2- 1- 2- 1- 2- 1- 2- 1- 1- 2- 1- 1- 2- 1- 2- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	-1 -2

Cubic Formula (x³)

Description	Equation	Notes
Cubic Formula Form	$ax^3 + bx^2 + cx + d = 0$	Coefficients must be integers
Cubic Formula	$x_1 = \sqrt[3]{e + \sqrt{e^2}}$ where $e = \left(\frac{1}{e^2}\right)$	$\frac{bc}{6a^2} + \sqrt[3]{e} - \sqrt{e^2 + f^3} - \frac{b}{3a}$ $\frac{bc}{6a^2} - \frac{d}{2a} - \frac{b^3}{27a^3}$ $= \left(\frac{c}{3a} - \frac{b^2}{9a^2}\right)$ using the quadratic formula.

Inequalities (a > b)

Property	Equation	Notes
Inequality Symbols	<,≤,=,≠,≥,>	≠: <>,! =
Sum	$a < b$ $\Rightarrow a + c < b + c$	
Difference	$a < b$ $\Rightarrow a - c < b - c$	
Product (Positive)	$a < b \text{ and } c > 0$ $\Rightarrow ac < bc$	Multiplying or dividing by a positive
Quotient (Positive)	$a < b \text{ and } c > 0$ $\Rightarrow \frac{a}{c} < \frac{b}{c}$	number does not change the inequality direction
Product (Negative)	$a < b \text{ and } c < 0$ $\Rightarrow ac > bc$	Multiplying or dividing by a <u>negative</u>
Quotient (Negative)	$a < b \text{ and } c < 0$ $\Rightarrow \frac{a}{c} > \frac{b}{c}$	number changes the inequality direction (e.g., $c=-1$)
Inequality Notation	Interval Notation	Number Line Graph
$a \le x$	[<i>a</i> ,∞)	0 1 2 3 4 5 6 7 8 9 10 11 12
a < x	(a,∞)	0 1 2 3 4 5 6 7 8 9 10 11 12
$a \ge x$	(−∞, <i>a</i>]	0 1 2 3 4 5 6 7 8 9 10 11 12
a > x	(−∞, <i>a</i>)	0 1 2 3 4 5 6 7 8 9 10 11 12
$a \le x \le b$	[a, b]	0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
a < x < b	(a,b)	0 1 2 3 4 5 6 7 8 9 10 11 12
$a \ge x \ge b$	$(-\infty,a] \cup [b,\infty)$	0 1 2 3 4 5 6 7 8 9 10 11 12
a > x > b	$(-\infty,a)\cup(b,\infty)$	O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Absolute Values (|a|)

Property	Equation	Notes
Definition	$ a = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$	Simply strip away the minus sign
Observations	$ a \ge 0$	Are never negative
Observations	-a = a	We care about the magnitude only
Product Rule	ab = a b	
Quotient Rule	$\left \frac{a}{b}\right = \frac{ a }{ b }$	
Solving	ax+b =c	Positive Case: $(ax + b) = c$ Negative Case: $-(ax + b) = c$
Triangle Inequality	$ a + b \le a + b $ $ a - b \ge a - b $	x $z < x + y$ y $z < x + y$ $z \approx x + y$

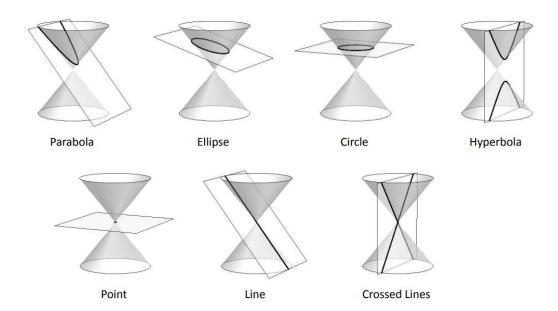
Distance Formula

Property	Equation
Distance Formula	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
Distance Formula	Same as Pythagorean Theorem $c^2 = a^2 + b^2$
Graph	(x_2,y_2) y_2-y_1 (x_1,y_1) x_2-x_1 $d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$

Complex Numbers (a + bi)

Property	Equation	Notes
	$i = \sqrt{-1}$	$i^{4n} = 1$
Imaginary Number	$i^2 = -1$	$i^{4n+1} = i$
(Adjacent Number)	$i^3 = -i = -\sqrt{-1}$	$i^{4n+2} = -1$
	$i^4 = 1$	$i^{4n+3} = -i$
Usage	$\sqrt{-a} = i\sqrt{a}$	Assuming $a \geq 0$
Complex Number	a + bi	Real + Imaginary
Sum	(a+bi)+(c+di)	(i) = a + c + (b+d)i
Difference	(a+bi)-(c+di)	(i) = a - c + (b - d)i
Product	(a+bi)(c+di) =	ac - bd + (ad + bc)i
Quotient	<u> </u>	$\frac{(a-bi)}{a-bi}$
Quotient	$\frac{1}{(a+bi)} - \frac{1}{(a+bi)}$	$\frac{(\boldsymbol{a}-\boldsymbol{b}\boldsymbol{i})}{(\boldsymbol{a}-\boldsymbol{b}\boldsymbol{i})} = \frac{c(a-b\boldsymbol{i})}{a^2+b^2}$
Conjugate	$\overline{(a+b\iota)}=a-bi$	$\overline{(a-b\iota)}=a+bi$
Modulus	$ a+bi = \sqrt{a^2 + b^2}$	Distance from origin $(0,0)$ to (a,b)
Squares	$a^2 + b^2 = (a + bi) (a - bi)$	
Squares	$ a+bi ^2 = (a+bi)(a-bi)$	
Euler's Identity	$e^{i\pi} + 1 = 0$	
Graph	imaginary axis	z = x + iy
		real axis

Conic Sections



Line

Description	Equation	Notes
Slope	$m = \frac{rise}{run}$ $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x}$	$P_1 = (x_1, y_1) \\ P_2 = (x_2, y_2) \\ \text{Passes through points } P_1 \text{ and } P_2$
Standard Form	ax + by + c = 0	Where a is positive
Slope-Intercept Form	y = mx + b $f(x) = mx + b$	b is the y -axis intercept Passes through point $(0,b)$
Point-Slope Form	$y - y_0 = m(x - x_0)$	Manipulation of the slope formula
Intercept Form	$y - y_0 = m(x - x_0)$ $\frac{x}{a} + \frac{y}{b} = 1$	a is the x -intercept b is the y -intercept
Vertical Line	x = a	Passes through point $(a, 0)$
Horizontal Line	y = b $f(x) = b$	Passes through point $(0,b)$
Domain	The domain of $y = mx + b$ is $(-\infty, \infty)$	Rise 2 Run 3

Circle

Description	y-Axis Symmetry	x-Axis Symmetry
Standard Form	$x^{2} + y^{2} = r^{2}$ $(x - h)^{2} + (y - k)^{2} = r^{2}$	Same
Radius	$r = \sqrt{(x_1 - h)^2 + (y_1 - k)^2}$	Same
Center	(h,k)	Same
Vertices	None	Same
Focus	(h,k)	Same
Graph	Radius, r Center (h, k)	Same

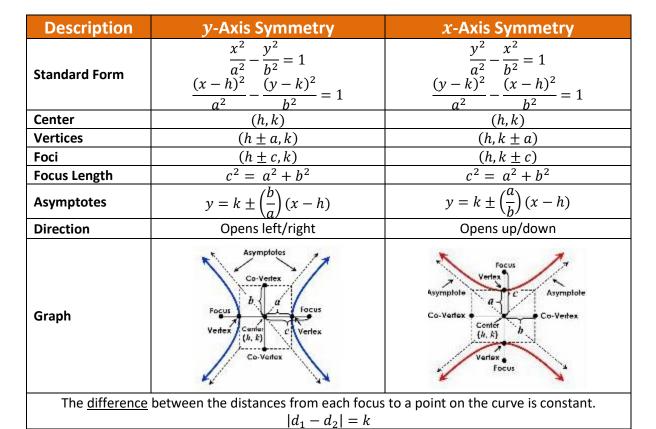
Parabola

Description	y-Axis Symmetry	x-Axis Symmetry
Standard Form	$y = ax^2 + bx + c$ $f(x) = ax^2 + bx + c$	$x = ay^{2} + by + c$ $g(y) = ay^{2} + by + c$
Vertex Form	$y = a(x - h)^2 + k$	$x = a(y - k)^2 + h$
Factored Form	$y = a(x - r_1)(x - r_2)$	Roots r_1, r_2
Graphing Form	$x^{2} = 4py$ $(x - h)^{2} = 4p(y - k)$ (h, k)	$y^2 = 4px$ $(y-k)^2 = 4p(x-h)$
Vertex	$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$	$\left(g\left(-\frac{b}{2a}\right), -\frac{b}{2a}\right)$
Focus	(h, k+p)	(h+p,k)
Directrix	y = k - p	x = h - p
Direction	Opens up if $a>0$ Opens down if $a<0$	Opens right if $a>0$ Opens left if $a<0$
Graph	Facus P Vertex (b, k) Directrix	P P Symmetry Pocus Vertex (h, k)

Ellipse

Description	y-Axis Symmetry	x-Axis Symmetry
Standard Form	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$ $\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$
Center	(h,k)	(h,k)
Vertices	$(h \pm a, k)$	$(h, k \pm a)$
Co-Verticies	$(h, k \pm b)$	$(h \pm b, k)$
Foci	$(h \pm c, k)$	$(h, k \pm c)$
Focus Length	$c^2 = a^2 - b^2$	$c^2 = a^2 - b^2$
Graph	Co-Verlex Converlex Converlex Converlex Converlex Converlex Converlex Converlex Converlex Converlex Converlex	Co-Vertex Center (k, k) Vertex Focus Vertex Focus
The sum of the	l distances from each focus to a point on	the curve is constant $ d_x + d_y = k$

Hyperbola



Sources:

- Brack, Tyne (2023, 24 January). Maneuvering the Middle, Factoring Polynomials with Special Cases. https://www.maneuveringthemiddle.com/factoring-polynomials-with-special-cases/
- Dawkins, Paul (2024). Paul's Online Notes, Algebra Cheat Sheet. https://tutorial.math.lamar.edu
- Larson, Ron & Edwards, Bruce (2009). Algebra 1-Pager Reference, Calculus 9th Edition. https://www.amazon.com/Bruce-Edwards-Larson-Calculus-Hardcover/dp/B004QICACS/ref=sr 1 1
- Math Salamanders (2024). Inequalities on a Number Line. https://www.math-salamanders.com/inequalities-on-a-number-line.html
- TeachersPayTeachers.com (2019). Conic Section Graphs, All Things Algebra. https://www.pinterest.com/pin/612911830514800210/

ALGEBRA

Factors and Zeros of Polynomials

Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solution of the equation p(x) = 0. Furthermore, (x - a) is a factor of the polynomial.

Fundamental Theorem of Algebra

An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imaginary, a real polynomial of odd degree must have at least one real zero.

Quadratic Formula

If $p(x) = ax^2 + bx + c$, and $0 \le b^2 - 4ac$, then the real zeros of p are $x = \left(-b \pm \sqrt{b^2 - 4ac}\right)/2a$.

Special Factors

$$x^{2} - a^{2} = (x - a)(x + a)$$
 $x^{3} - a^{3} = (x - a)(x^{2} + ax + a^{2})$
 $x^{3} + a^{3} = (x + a)(x^{2} - ax + a^{2})$ $x^{4} - a^{4} = (x^{2} - a^{2})(x^{2} + a^{2})$

Binomial Theorem

$$(x + y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x + y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x + y)^{4} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$

$$(x + y)^{n} = x^{n} + nx^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^{2} + \dots + nxy^{n-1} + y^{n}$$

$$(x - y)^{2} = x^{2} - 2xy + y^{2}$$

$$(x - y)^{3} = x^{3} - 3x^{2}y + 3xy^{2} - y^{3}$$

$$(x - y)^{4} = x^{4} - 4x^{3}y + 6x^{2}y^{2} - 4xy^{3} + y^{4}$$

$$(x - y)^{n} = x^{n} - nx^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^{2} + \dots + nxy^{n-1} + y^{n}$$

$$(x - y)^{n} = x^{n} - nx^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^{2} - \dots + nxy^{n-1} + y^{n}$$

Rational Zero Theorem

If $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ has integer coefficients, then every rational zero of p is of the form x = r/s, where r is a factor of a_0 and s is a factor of a_n .

Factoring by Grouping

$$acx^3 + adx^2 + bcx + bd = ax^2(cx + d) + b(cx + d) = (ax^2 + b)(cx + d)$$

Arithmetic Operations

$$ab + ac = a(b + c)$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\frac{a + b}{c} = \frac{a}{c} + \frac{b}{c}$$

$$\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)} = \left(\frac{a}{b}\right)\left(\frac{d}{c}\right) = \frac{ad}{bc}$$

$$\frac{\left(\frac{a}{b}\right)}{c} = \frac{a}{bc}$$

$$\frac{a}{\left(\frac{b}{c}\right)} = \frac{ac}{b}$$

$$a\left(\frac{b}{c}\right) = \frac{ab}{c}$$

$$\frac{a - b}{c - d} = \frac{b - a}{d - c}$$

$$\frac{ab + ac}{a} = b + c$$

Exponents and Radicals

$$a^{0} = 1, \quad a \neq 0 \qquad (ab)^{x} = a^{x}b^{x} \qquad a^{x}a^{y} = a^{x+y} \qquad \sqrt{a} = a^{1/2} \qquad \frac{a^{x}}{a^{y}} = a^{x-y} \qquad \sqrt[n]{a} = a^{1/n}$$

$$\left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}} \qquad \sqrt[n]{a^{m}} = a^{m/n} \qquad a^{-x} = \frac{1}{a^{x}} \qquad \sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b} \qquad (a^{x})^{y} = a^{xy} \qquad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$