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Cheat Sheet 
21 October 2022 

DRAFT 
 
Symbols 
 

Symbol Name / Definition Symbol Name / Definition 

∅ Empty set, set with no members 
R0, R90, 

R180, R270 
Rotation 

ℕ Natural numbers R360/n Cyclic Rotation 

ℤ Integers (Zahlen) H, V, D, D’ Flip (horizontal, vertical, diagonal) 

ℚ Rational numbers 〈a〉 The set {an | n ∈ ℤ} under • (na if +) 

ℝ Real numbers [
𝐴 𝐵
𝐶 𝐷

]
−1

 2x2 Matrix Inverse 

ℂ Complex numbers Zn Group of integers modulo n 

F* Nonzero Field Zp Zn where p a prime 

⊆ Is a subset of  mod Modulus arithmetic 

∈ Is an element of GL(2, F) 
General Linear Group of 2x2 
matrices over the field F 

∞ Infinity gn The group operation on g n times 

° Degrees |G| Order of a Group 

≤, ≠, ≥ Inequalities |g| Order of an Element 

•, ∙ Multiply gcd (a, b) Greatest Common Divisor 

÷ Division lcm (a, b) Least Common Multiple 

a | b a divides b   

a-1 Inverse   

<tab>     
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Ch. 0: Preliminaries 
 

Definition Description 

Well Ordering Principle 
Every nonempty set of positive integers contains a smallest 
member. 

Theorem 0.1: 
Division Algorithm 

Let a and b be integers with b > 0.  
Then there exist unique integers q and r with the property that  
a = bq + r, where 0 ≤ r < b. 
Example: For a = 17 and b = 5, the division algorithm gives 17 = 5 ⋅ 3 
+ 2. Here q = 3 and r = 2. 

Greatest Common Divisor 
(GCD) 

𝑔𝑐𝑑 (𝑥, 𝑦) = 𝑝1
𝑚𝑖𝑛{𝛼1,𝛽1}

· 𝑝2
𝑚𝑖𝑛{𝛼2,𝛽2}

· 𝑝𝑘
𝑚𝑖𝑛{𝛼𝑘,𝛽𝑘}

 
 

Largest positive integer that is a factor of both x and y. 

Think Intersection (∩) of 𝛼𝑖 , 𝛽𝑖. 

The greatest common divisor of two nonzero integers a and b is the 
largest of all common divisors of a and b. We denote this integer by 
gcd (a, b). 

Relatively Prime Integers When gcd (a, b) = 1, we say a and b are relatively prime. 

Theorem 0.2: 
GCD Is a Linear 
Combination 

For any nonzero integers a and b, there exist integers s and t such 
that gcd (a, b) = as + bt. Moreover, gcd(a, b) is the smallest positive 
integer of the form as + bt. 

Corollary 

If a and b are relatively prime, then there exist integers s and t such 
that as + bt = 1. 
Example: gcd (4, 15) = 1 where 4 and 15 are relatively prime and 4 ⋅ 
4 + 15(-1) = 1. 

Euclid’s Lemma 
p | ab Implies p | a or p | b 

If p is a prime that divides ab, then p divides a or p divides b.  
 

Theorem 0.3: 
Fundamental Theorem of 
Arithmetic 

Every integer greater than 1 is a prime or a product of primes.  
This product is unique, except for the order in which the factors 
appear.  
That is, if n = p1p2 ... pr and n = q1q2 ... qs, where the p’s and q’s are 
primes, then r = s and, after renumbering the q’s, we have pi = qi for 
all i. 

Least Common Multiple 
(LCM) 

𝑙𝑐𝑚 (𝑥, 𝑦) = 𝑝1
𝑚𝑎𝑥{𝛼1,𝛽1}

· 𝑝2
𝑚𝑎𝑥{𝛼2,𝛽2}

· 𝑝𝑘
𝑚𝑎𝑥{𝛼𝑘,𝛽𝑘}

 
 

Smallest positive integer that is an integer multiple of both x and y. 

Think Union (∪) of 𝛼𝑖, 𝛽𝑖. 

The least common multiple of two nonzero integers a and b is the 
smallest positive integer that is a multiple of both a and b.  
We will denote this integer by lcm (a, b). 
Example: lcm (4, 6) = 12 

Computing ab mod n or (a + 
b) mod n 

Let n be a fixed positive integer greater than 1. If a mod n = a’ and b 
mod n = b’, then  

(a + b) mod n = (a’ + b’) mod n 
(ab) mod n = (a’b’) mod n 
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Logic Gates 

A logic gate is a device that accepts as inputs two possible states 
(on or off) and produces one output (on or off). This can be 
conveniently modeled using 0 and 1 and modulo 2 arithmetic. 

x AND y  xy 
x OR y  x + y + xy 
x XOR y  x + y 
MAJ(x, y, z)  xz + xy + yz. 

Theorem 0.4: 
Properties of Complex 
Numbers 

1. Closure under addition: 
(a + bi) + (c + di) = (a + c) + (b + d)i 

2. Closure under multiplication: 
(a + bi) (c + di) = (ac) + (ad)i + (bc)i + (bd)i2  
= (ac - bd) + (ad + bc)i  

3. Closure under division (c + di ≠ 0): 
(𝑎 +  𝑏𝑖)

(𝑐 +  𝑑𝑖)
=

(𝑎 +  𝑏𝑖)

(𝑐 +  𝑑𝑖)
•

(𝑐 −  𝑑𝑖)

(𝑐 −  𝑑𝑖)
 

 

=
(𝑎𝑐 + 𝑏𝑑) + (𝑏𝑐 − 𝑎𝑑)𝑖

𝑐2 + 𝑑2
 

 

=  
(𝑎𝑐 + 𝑏𝑑)

𝑐2 + 𝑑2
+

(𝑏𝑐 − 𝑎𝑑)

𝑐2 + 𝑑2
𝑖 

4. Complex conjugation: 
(a + bi) (a - bi) = a2 + b2  

5. Inverses: 
For every nonzero complex number a + bi there is a 
complex number c + di such that (a + bi) (c + di) = 1 (That is, 
(a + bi)-1 exists in C).  

6. Powers: 
For every complex number a + bi = r(cos θ + i sin θ ) and 
every positive integer n, we have  
(a + bi)n = (r(cos θ + i sin θ))n = rn (cos nθ + i sin nθ).  

7. nth-roots of a + bi: 
For any positive integer n the n distinct nth roots of a + bi = 
r(cos θ + i sin θ) are 

√𝑟
𝑛

(cos
𝜃 + 2𝜋𝑘

𝑛
+ 𝑖 sin

𝜃 + 2𝜋𝑘

𝑛
) 

for k = 0, 1, …, n - 1. 

Theorem 0.5: 
First Principle of 
Mathematical Induction 

Let S be a set of integers containing a. Suppose S has the property 
that whenever some integer n ≥ a belongs to S, then the integer n + 
1 also belongs to S. Then, S contains every integer greater than or 
equal to a. 

DeMoivre’s Theorem (cos θ + i sin θ)n = (cos nθ + i sin nθ) 

Theorem 0.6: 
Second Principle of 
Mathematical Induction 

Let S be a set of integers containing a. Suppose S has the property 
that n belongs to S whenever every integer less than n and greater 
than or equal to a belongs to S. Then, S contains every integer 
greater than or equal to a. 
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Equivalence Relation 

An equivalence relation on a set S is a set R of ordered pairs of 
elements of S such that 
1. (a, a) ∈ R for all a ∈ S     (reflexive property).  
2. (a, b) ∈ R implies (b, a) ∈ R    (symmetric property).  
3. (a, b) ∈ R and (b, c) ∈ R imply (a, c) ∈ R (transitive property). 
NOTE: It is customary to write aRb instead of (a, b) ∈ R. 

Theorem 0.7: 
Equivalence Classes 
Partition 

The equivalence classes of an equivalence relation on a set S 
constitute a partition of S. Conversely, for any partition P of S, there 
is an equivalence relation on S whose equivalence classes are the 
elements of P. 

Function (Mapping)  

A function (or mapping) f from a set A to a set B is a rule that 
assigns to each element a of A exactly one element b of B. The set A 
is called the domain of f, and B is called the range of f. If f assigns b 
to a, then b is called the image of a under f. The subset of B 
comprising all the images of elements of A is called the image of A 
under f. 

Composition of Functions 

Let f: A → B and g: B → C. The composition gf is the mapping from 
A to C defined by (gf)(a) = g(f(a)) for all a in A. 
 

 
 
(f ∘ g)(x) = f(g(x)) 

One-to-One Function 

A function f from a set A is called one-to-one if for every a1, a2 ∈ A, 
f(a1) = f(a2) implies a1 = a2. 
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Function from A onto B 

A function f from a set A to a set B is said to be onto B if each 
element of B is the image of at least one element of A. In symbols, 

f: A → B is onto if for each b in B there is at least one a in A such 
that f(a) = b. 
 

 
 

Theorem 0.8: 
Properties of Functions 

Given functions f: A → B, g: B → C, and h: C → D, then  
1. h(gf) = (hg)f  (associativity).  
2. If f and g are one-to-one, then gf is one-to-one.  
3. If f and g are onto, then gf is onto.  
4. If f is one-to-one and onto, then there is a function f-1 from B 
onto A such that (f-1f)(f) = f for all f in A and (ff-1)(g) = g for all g in B. 
 

 

Cancellation Property 
Suppose f, g, and h are functions. If fh = gh and h is one-to-one and 
onto, then f = g. 
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Ch. 1: Introduction to Groups 
 

Definition Description 

Abelian 
Commutative (ab = ba) 
Named after Niels Abel, Norwegian mathematician. 

Non-Abelian Not commutative (ab ≠ ba) 

Dn:  
Dihedral Groups 

Dn = dihedral group of order 2n. 

Dihedral = having or contained by two plane faces. 
Examples: D3, D4, D5, D6 

 

D4:  
Dihedral Group of Order 8 

D4 (Square) 
The eight motions R0, R90, R180, R270, H, V, D, and D’, together with 
the operation composition, form a mathematical system called the 
dihedral group of order 8 (the order of a group is the number of 
elements it contains). It is denoted by D4. 

Cayley Table 
Operations table. All elements in the rows and columns, filled in 
with the operation results. 
Named after Arthur Cayley, English mathematician. 

Cyclic Rotation Group of 
Order n 

<R360/n> 
Many objects and figures have rotational symmetry but not 
reflective symmetry.  
A symmetry group consisting of the rotational symmetries of 0°, 
360°/n, 2(360°)/n, ..., (n - 1)360°/n, and no other symmetries. 
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Ch. 2: Groups 
 

Theorem / Definition Description 

Binary Operation 
 

Let G be a set. A binary operation on G is a function that assigns 
each ordered pair of elements of G an element of G. 
(Closure) 

Group 

Let G be a set together with a binary operation (usually called 
multiplication) that assigns to each ordered pair (a, b) of elements 
of G an element in G (closure) denoted by ab. We say G is a group 
under this operation if the following three properties are satisfied.  
 
1. Associativity. The operation is associative; that is, (ab)c = a(bc) 
for all a, b, c in G.  
 
2. Identity. There is an element e (called the identity) in G such that 
ae = ea = a for all a in G.  
 
3. Inverses. For each element a in G, there is an element b in G 
(called an inverse of a) such that ab = ba = e.  

Algebraic Systems Sets with one or more binary operations. 

Abstract Algebra 

The goal of abstract algebra is to discover truths about algebraic 
systems that are independent of the specific nature of the 
operations.  
All one knows or needs to know is that these operations, whatever 
they may be, have certain properties.  
We then seek to deduce consequences of these properties. 

GL(2, F) 
General Linear Group of 2x2 matrices over the field F. 
Non-Abelian. 

SL(2, F) 
Special Linear Group of 2x2 matrices over the field F with 
determinant 1. Non-Abelian. 

Zn 
Group of integers modulo n.  

Zn = {0, 1, ..., n - 1} for n ≥ 1. 
Implies the operation of addition. 

U(n) 

The set of all positive integers less than n and relatively prime to n 
under the operation of multiplication modulo n. 

U(n) = {a ∈ Zn | a < n and gcd (a, n) = 1}. 
If n is a prime, then U(n) = {0, 1, ..., n - 1}. 

U(n) Examples 

U(2) = {1, 2}  prime 
U(3) = {1, 2, 3}  prime 
U(4) = {1, 3} 
U(5) = {1, 2, 3, 4} prime 
U(6) = {1, 3, 5} 
U(7) = {1, 2, 3, 4, 5, 6} prime 
U(8) = {1, 3, 5, 7} 
U(10) = {1, 3, 7, 9} 
U(15)={1, 2, 4, 7, 8, 11, 13, 14} 
U(18) = {1, 5, 7, 11, 13, 17} 
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Theorem 2.1: 
Uniqueness of the Identity 

In a group G, there is only one identity element. 

Theorem 2.2: 
Cancellation 

In a group G, the right and left cancellation laws hold; that is, ba = 
ca implies b = c, and ab = ac implies b = c. 

Theorem 2.3: 
Uniqueness of Inverses 

For each element a in a group G, there is a unique element b in G 
such that ab = ba = e. 

gn 

Product: g g g g … g (n factors) 
Sum: g+g+g+g+…+g (n factors) 
g0 = e or identity 
If g is negative: gn = (g-1)|n|  

Multiplicative Group 

a• b or ab Multiplication 
e or 1  Identity or one 
a-1  Multiplicative inverse of a 
an  Power of a 
ab-1  Quotient 

Additive Group 

a + b  Addition 
0  Identity or zero 
-a  Additive inverse of a 
na  Multiple of a 
a - b  Difference 

Theorem 2.4: 
Socks–Shoes Property 

For group elements a and b, (ab)-1 = b-1a-1. 

Division Algorithm 
k = qn + r with 0 ≤ r < n. 
q is the quotient; r is the remainder. 
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Ch. 3: Finite Groups; Subgroups 
 

Axiom / Theorem / 
Lemma / Definition 

Description 

Order of a Group (|G|) 
The number of elements of a group (finite or infinite) is called its 
order. We will use |G| to denote the order of G. 

Order of an Element (|g|) 

The order of an element g in a group G is the smallest positive 
integer n such that gn = e.  
(In additive notation, this would be ng = 0.) 
If no such integer exists, we say that g has infinite order.  
The order of an element g is denoted by |g|. 

Subgroup 
If a subset H of a group G is itself a group under the operation of G, 
we say that H is a subgroup of G. 
H ≤ G 

Proper Subgroup H < G means “H is a proper subgroup of G”. 

Trivial Subgroup 
The trivial subgroup of any group is the subgroup {e} consisting of 
just the identity element. 

Modular Arithmetic 
Google: To compute 134 mod 15, just type in the search box: 

“13ˆ4 mod 15” 

Theorem 3.1: 
One-Step Subgroup Test 

Let G be a group and H a nonempty subset of G. If ab-1 is in H 
whenever a and b are in H, then H is a subgroup of G.  
(In additive notation, if a - b is in H whenever a and b are in H, then 
H is a subgroup of G.) 
 
1. Identify the property P that distinguishes the elements of H; that 
is, identify a defining condition.  
 
2. Prove that the identity has property P. (This verifies that H is 
nonempty.)  
 
3. Assume that two elements a and b have property P.  
 
4. Use the assumption that a and b have property P to show that 
ab-1 has property P.  

Theorem 3.2: 
Two-Step Subgroup Test 

Let G be a group and let H be a nonempty subset of G. If ab is in H 
whenever a and b are in H (H is closed under the operation), and a-1 
is in H whenever a is in H (H is closed under taking inverses), then H 
is a subgroup of G. 

Not a Subgroup 

To guarantee that the subset is not a subgroup, show one: 
 
1. Show that the identity is not in the set.  
2. Exhibit an element of the set whose inverse is not in the set.  
3. Exhibit two elements of the set whose product is not in the set. 

Theorem 3.3: 
Finite Subgroup Test  

Let H be a nonempty finite subset of a group G.  
If H is closed under the operation of G, then H is a subgroup of G. 
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Cyclic Subgroup 〈a〉 
The subgroup 〈a〉 is called the cyclic subgroup of G generated by a. 

〈a〉 = {an | n ∈ ℤ} under multiplication 
〈a〉 = {na | n ∈ ℤ} under addition 

Cyclic Group 

In the case that G = 〈a〉 = {an | n ∈ ℤ}, we say that G is cyclic and a is 
a generator of G. 
 
Cyclic Group if there is an element a in G such that G = {an | n ∈ ℤ}. 
 
Element ‘a’ is called the generator. 
A cyclic group may have many generators. 

Theorem 3.4: 
〈a〉 Is a Subgroup 

Let G be a group, and let a be any element of G. Then, 〈a〉 is a 
subgroup of G. 
Use 〈a〉 or <a>. 

〈a〉 Examples 

Under Addition: 
〈2〉 = {0, 2, 4, 6, …, 2n, …} 
〈2〉 = Z20 〈8, 14〉 = {0, 2, 4, …, 18} 
〈3〉 = {0, 3, 6, 9, …, 3n, …} 
U(10) = [1, 3, 7, 9] = 〈3〉 = 〈7〉 
Z8 = 〈1〉 = 〈3〉 = 〈5〉 = 〈7〉 = {0, 1, 2, 3, 4, 5, 6, 7} 
 
Under Multiplication: 
〈3〉 = {3, 9, 7, 1} = {1, 3, 7, 9} mod 10 
〈3〉 = {31, 32, 33, 34, 35, 36} = {1, 3, 5, 9, 11, 13} mod 14 

Center of a Group 

The center, Z(G), of a group G is the subset of elements in G that 
commute with every element of G. In symbols, 

Z(G) = {a ∈ G | ax = xa for all x in G}.  
[The German word for center is Zentrum] 

Theorem 3.5: 
Center Is a Subgroup 

The center of a group G is a subgroup of G. 

Centralizer of a in G 
Let a be a fixed element of a group G. The centralizer of a in G, C(a), 
is the set of all elements in G that commute with a. In symbols,  

C(a) = {g ∈ G | ga = ag}. 

Theorem 3.6: 
C(a) Is a Subgroup 

For each a in a group G, the centralizer of a is a subgroup of G. 
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Ch. 4: Cyclic Groups 
 

Axiom / Theorem / Lemma / 
Definition 

Description 

Cyclic Group 
If there is an element a in G such that G = 〈a〉 = {an | n ∈ 
ℤ}. Element a is called the generator. 

Theorem 4.1: 
Criterion for ai = aj 

Let G be a group, and let a belong to G.  
If a has infinite order, then ai = aj if and only if i = j. 
If a has finite order, say, n, then 〈a〉 = {e, a, a2, ..., an–1} 
and ai = aj if and only if n divides into i – j evenly. 

Corollary 1: 
|a| = |〈a〉| 

For any group element a, |a| = |〈a〉|. 

Corollary 2:  
ak = e Implies That |a| Divides k 

Let G be a group and let a be an element of order n in G.  
If ak = e, then n divides k. 

Corollary 3: 
Relationship between |ab| and 
|a||b| 

If a and b belong to a finite group and ab = ba, then |ab| 
divides |a||b|.  

Implication of Theorem 4.1 

Finite Case: 
Multiplication in 〈a〉 is addition modulo n. 
Example: If (i + j) mod n = k, then aiaj = ak = a(i + j) mod n. 
Multiplication in 〈a〉 works the same as addition in Zn 
whenever |a| = n. 
 
Infinite Case: 
Multiplication in 〈a〉 is addition. 
Example: aiaj = ai+j. 
Multiplication in 〈a〉 works the same as addition in Z. 

Theorem 4.2: 
〈ak〉 = 〈agcd(n,k)〉 and |ak| = n/gcd (n, k) 

Let a be an element of finite order n in a group and let k 
be a positive integer.  

Then 〈ak〉 = 〈agcd(n,k)〉  
and |ak| = n/gcd (n, k). 

 
The greatest common divisor (GCD) of two nonzero 
integers a and b is the greatest positive integer d such 
that d is a divisor of both a and b. 

Corollary 1: 
Orders of Elements in Finite Cyclic 
Groups 

In a finite cyclic group, the order of an element divides 
the order of the group. 

Corollary 2: 
Criterion for 〈ai〉 = 〈aj〉 and |ai| = |aj| 

Let |a| = n.  
Then 〈ai〉 = 〈aj〉 if and only if gcd (n, i) = gcd (n, j),  
and |ai| = |aj| if and only if gcd (n, i) = gcd (n, j). 

Corollary 3: 
Generators of Finite Cyclic Groups 

Let |a| = n.  
Then 〈a〉 = 〈aj〉 if and only if gcd (n, j) = 1,  
and |a| = |〈aj〉| if and only if gcd (n, j) = 1. 

NOTE: gcd (n, j) = 1 means n and j are relatively prime. 

Corollary 4: 
Generators of Zn 

An integer k in Zn is a generator of Zn if and only if gcd(n, 
k) = 1. 
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Theorem 4.3: 
Fundamental Theorem of Cyclic 
Groups 

Every subgroup of a cyclic group is cyclic.  
Moreover, if |〈a〉| = n, then the order of any subgroup of 
〈a〉 is a divisor of n;  
and, for each positive divisor k of n, the group 〈a〉 has 
exactly one subgroup of order k — namely, 〈an/k〉. 

Corollary: 
Subgroups of Zn 

For each positive divisor k of n, the set 〈n/k〉 is the unique 
subgroup of Zn of order k; moreover, these are the only 
subgroups of Zn. 

Theorem 4.4: 
Number of Elements of Each Order in 
a Cyclic Group 

If d is a positive divisor of n, the number of elements of 
order d in a cyclic group of order n is φ(d). 

Corollary: 
Number of Elements of Order d in a 
Finite Group 

In a finite group, the number of elements of order d is a 
multiple of φ(d). 
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Ch. 5: Permutation Groups 
 

Axiom / Theorem / 
Lemma / Definition 

Description 
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Ch. 6: Isomorphisms 
 

Axiom / Theorem / 
Lemma / Definition 

Description 
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Ch. 7: Cosets and Lagrange’s Theorem 
 

Axiom / Theorem / 
Lemma / Definition 

Description 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
Note: Skip Ch. 8 
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Ch. 9: Normal Subgroups and Factor Groups 
 

Axiom / Theorem / 
Lemma / Definition 

Description 
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Ch. 10: Group Homomorphisms 
 

Axiom / Theorem / 
Lemma / Definition 

Description 
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Ch. 11: Fundamental Theorem of Finite Abelian Groups 
 

Axiom / Theorem / 
Lemma / Definition 

Description 
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Ch. 12: Introduction to Rings 
 

Axiom / Theorem / 
Lemma / Definition 

Description 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
 
 
Sources: 

• SNHU MAT 470 - Real Analysis, The Real Numbers and Real Analysis, Ethan D. Bloch, Springer 
New York, 2011. 

 

https://www.snhu.edu/admission/academic-catalogs/coce-catalog#/courses/VydU8ZIYx
https://www.amazon.com/Real-Numbers-Analysis/dp/0387721762

