Harold's Abstract Algebra Cheat Sheet 21 October 2022 DRAFT

Symbols

Symbol	Name / Definition	Symbol	Name / Definition
Ø	Empty set, set with no members	R ₀ , R ₉₀ , R ₁₈₀ , R ₂₇₀	Rotation
N	Natural numbers	R _{360/n}	Cyclic Rotation
Z	Integers (Zahlen)	H, V, D, D'	Flip (horizontal, vertical, diagonal)
Q	Rational numbers	(a)	The set $\{a^n \mid n \in \mathbb{Z}\}$ under • (na if +)
R	Real numbers	$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1}$	2x2 Matrix Inverse
C	Complex numbers	Zn	Group of integers modulo n
F*	Nonzero Field	Zp	Z _n where p a prime
⊆	Is a subset of	mod	Modulus arithmetic
E	Is an element of	GL(2, F)	General Linear Group of 2x2 matrices over the field F
8	Infinity	g ⁿ	The group operation on g n times
0	Degrees	G	Order of a Group
≤, ≠, ≥	Inequalities	g	Order of an Element
•,•	Multiply	gcd (a, b)	Greatest Common Divisor
÷	Division	lcm (a, b)	Least Common Multiple
a b	a divides b		
a ⁻¹	Inverse		
<tab></tab>			

Ch. 0: Preliminaries

Definition	Description
Well Ordering Principle	Every nonempty set of positive integers contains a smallest
	member.
	Let a and b be integers with b > 0.
Theorem 0.1:	Then there exist unique integers q and r with the property that
Division Algorithm	$a = bq + r$, where $0 \le r < b$.
	Example: For a = 17 and b = 5, the division algorithm gives $17 = 5 \cdot 3$
	+ 2. Here q = 3 and r = 2. $\min(\alpha, \beta) = \min(\alpha, \beta) = \min(\alpha, \beta)$
	$gcd(x,y) = p_1^{min_1(u_1,p_1)} \cdot p_2^{min_1(u_2,p_2)} \cdot p_k^{min_1(u_k,p_k)}$
Createst Common Divisor	Largest positive integer that is a factor of both x and y.
Greatest Common Divisor	Think Intersection (\cap) of α_i, β_i .
(GCD)	The greatest common divisor of two nonzero integers a and b is the
	largest of all common divisors of a and b. We denote this integer by
	gcd (a, b).
Relatively Prime Integers	When gcd (a, b) = 1, we say a and b are relatively prime.
Theorem 0.2:	For any nonzero integers a and b, there exist integers s and t such
GCD Is a Linear	that gcd (a, b) = as + bt. Moreover, gcd(a, b) is the smallest positive
Combination	integer of the form as + bt.
	If a and b are relatively prime, then there exist integers s and t such
Corollary	that as $+$ bt $=$ 1.
	Example: gcd (4, 15) = 1 where 4 and 15 are relatively prime and $4 \cdot 4 + 45(4) = 1$
	4 + 15(-1) = 1.
n l ab Implies n l a or n l b	If p is a prime that divides ab, then p divides a of p divides b.
	Eveny integer greater than 1 is a prime or a product of primes
	This product is upique, except for the order in which the factors
Theorem 0.3:	annear
Fundamental Theorem of	That is, if $n = p_1 p_2 \dots p_r$ and $n = q_1 q_2 \dots q_s$, where the p's and q's are
Arithmetic	primes, then $r = s$ and, after renumbering the q's, we have $p_i = q_i$ for
	all i.
	$lcm(x, y) = p_1^{max\{\alpha_1, \beta_1\}} \cdot p_2^{max\{\alpha_2, \beta_2\}} \cdot p_k^{max\{\alpha_k, \beta_k\}}$
	Smallest positive integer that is an integer multiple of both x and y.
Least Common Multiple	Think Union (\cup) of α_i, β_i .
(ICM)	The least common multiple of two nonzero integers a and b is the
	smallest positive integer that is a multiple of both a and b.
	We will denote this integer by lcm (a, b) .
	<u>Example</u> : lcm (4, 6) = 12
	Let n be a fixed positive integer greater than 1. If a mod n = a' and b
Computing ab mod n or (a +	mod n = b', then
b) mod n	(a + b) mod n = (a' + b') mod n
	(ab) mod n = (a'b') mod n

	A logic gate is a device that accepts as inputs two possible states
	(on or off) and produces one output (on or off). This can be
	conveniently modeled using 0 and 1 and modulo 2 arithmetic.
Logic Gates	x AND y xy
-	x OR y $x + y + xy$
	x XOR y x + y
	MAJ(x, y, z) $xz + xy + yz.$
	1. Closure under addition:
	(a + bi) + (c + di) = (a + c) + (b + d)i
	2. Closure under multiplication:
	(a + bi) (c + di) = (ac) + (ad)i + (bc)i + (bd)i ²
	= (ac - bd) + (ad + bc)i
	3. Closure under division (c + di ≠ 0):
	(a + bi) $(a + bi)$ $(c - di)$
	$\frac{1}{(c+di)} = \frac{1}{(c+di)} \cdot \frac{1}{(c-di)}$
	(ac + bd) + (bc - ad)i
	$= \frac{c^2 + d^2}{c^2 + d^2}$
	(ac+bd) $(bc-ad)$
Theorem 0.4	$= \frac{1}{c^2 + d^2} + \frac{1}{c^2 + d^2} l$
Properties of Complex	4. Complex conjugation:
Numbers	$(a + bi) (a - bi) = a^2 + b^2$
	5. Inverses:
	For every nonzero complex number a + bi there is a
	complex number c + di such that (a + bi) (c + di) = 1 (That is,
	$(a + bi)^{-1}$ exists in C).
	6. Powers:
	For every complex number $a + bi = r(\cos \theta + i \sin \theta)$ and
	every positive integer n, we have
	$(a + bi)'' = (r(\cos \theta + i \sin \theta))'' = r'' (\cos n\theta + i \sin n\theta).$
	7. n ^{or-} roots of a + bi:
	For any positive integer n the n distinct $n^{(0)}$ roots of $a + bi = n(a + b)$
	r(cos θ + i sin θ) are $(\theta \pm 2\pi k) = \theta \pm 2\pi k$
	$\sqrt[n]{r}\left(\cos\frac{\theta+2\pi\kappa}{1}+i\sin\frac{\theta+2\pi\kappa}{1}\right)$
	for $k = 0, 1, n = 1$
	Let S be a set of integers containing a Sunnose S has the property
Theorem 0.5:	that whenever some integer $n > a$ helongs to S then the integer $n + a$
First Principle of	1 also belongs to S. Then, S contains every integer greater than or
Mathematical Induction	equal to a
DeMoivre's Theorem	$(\cos \theta + i \sin \theta)^n = (\cos n\theta + i \sin n\theta)$
	Let S be a set of integers containing a Suppose S has the property
Theorem 0.6:	that n belongs to S whenever every integer less than n and greater
Second Principle of	than or equal to a belongs to S. Then, S contains every integer
Mathematical Induction	greater than or equal to a
	o. cate. that of equal to a

	An equivalence relation on a set S is a set R of ordered pairs of
	elements of S such that
Fourivalence Relation	1. (a, a) \in R for all a \in S (reflexive property).
	2. (a, b) \in R implies (b, a) \in R (symmetric property).
	3. (a, b) \in R and (b, c) \in R imply (a, c) \in R (transitive property).
	NOTE: It is customary to write aRb instead of (a, b) \in R.
Theorem 0.7	The equivalence classes of an equivalence relation on a set S
Fauivalence Classes	constitute a partition of S. Conversely, for any partition P of S, there
Partition	is an equivalence relation on S whose equivalence classes are the
	elements of P.
	A function (or mapping) f from a set A to a set B is a rule that
	assigns to each element a of A exactly one element b of B. The set A
Function (Mapping)	is called the domain of f, and B is called the range of f. If f assigns b
	to a, then b is called the image of a under 1. The subset of B
	comprising all the images of elements of A is called the image of A
	Let f: $\Lambda \rightarrow R$ and g: $R \rightarrow C$. The composition of is the manning from
	Δ to C defined by (gf)(a) = $g(f(a))$ for all a in Δ
	\bigcap \bigcap \bigcap
Composition of Functions	$\phi(a)$
	$\psi(\varphi(a))$
	\bigcirc
	$(f \circ g)(x) = f(g(x))$
	A function f from a set A is called one-to-one if for every $a_1, a_2 \in A$,
	$f(a_1) = f(a_2)$ implies $a_1 = a_2$.
	ø
	Ŷ
	\sim
One-to-One Function	$\left(\begin{array}{c} a \\ \end{array}\right) \longrightarrow \phi(a)$
	(a_2)
	Ø 1s one-to-one
	<i>y</i> 10 010 10 010

Function from A onto B	A function f element of f f: A → B is o that f(a) = b.	from a set A B is the image onto if for eac	to a set B is sai e of at least one th b in B there i	d to be onto B if ea e element of A. In s s at least one a in A	ich ymbols, A such
Theorem 0.8: Properties of Functions	Given functions f: $A \rightarrow B$, g: $B \rightarrow C$, and h: $C \rightarrow D$, then 1. h(gf) = (hg)f (associativity). 2. If f and g are one-to-one, then gf is one-to-one . 3. If f and g are onto, then gf is onto . 4. If f is one-to-one and onto, then there is a function f ¹ from B onto A such that (f ⁻¹ f)(f) = f for all f in A and (ff ⁻¹)(g) = g for all g in B. Domain Range Rule One-to-One Onto Z Z Z $x \rightarrow x^3$ Yes No R R $x \rightarrow x^3$ Yes Yes Z N $x \rightarrow x $ No Yes Z Z $x \rightarrow x^2$ No No				
Cancellation Property	suppose f, g, and h are functions. If th = gh and h is one-to-one and onto, then f = g.				

Ch. 1: Introduction to Groups

Definition Description			
Abolion	Commutative (ab = ba)		
Abenan	Named after Niels Abel, Norwegian mathematician.		
Non-Abelian	Not commutative (ab ≠ ba)		
D _n : Dihedral Groups	D _n = dihedral group of order 2n. Dihedral = having or contained by two plane faces. Examples: D ₃ , D ₄ , D ₅ , D ₆		
D₄: Dihedral Group of Order 8	D_4 (Square) The eight motions R_0 , R_{90} , R_{180} , R_{270} , H, V, D, and D', together with the operation composition, form a mathematical system called the dihedral group of order 8 (the order of a group is the number of elements it contains). It is denoted by D_4 .		
Cayley TableOperations table. All elements in the rows and columnsWith the operation results.Named after Arthur Cayley, English mathematician.			
Cyclic Rotation Group of Order n	<r<sub>360/n> Many objects and figures have rotational symmetry but not reflective symmetry. A symmetry group consisting of the rotational symmetries of 0°, 360°/n, 2(360°)/n,, (n - 1)360°/n, and no other symmetries.</r<sub>		

Ch. 2: Groups

Theorem / Definition	Description		
Rinary Operation	Let G be a set. A binary operation on G is a function that assigns		
Binary Operation	each ordered pair of elements of G an element of G.		
	(Closure)		
	Let G be a set together with a binary operation (usually called		
	multiplication) that assigns to each ordered pair (a, b) of elements		
	of G an element in G (closure) denoted by ab. We say G is a group		
	under this operation if the following three properties are satisfied.		
	1 Associativity. The operation is associative: that is $(ab)c = a(bc)$		
Group	for all a b c in G		
Group			
	2. <i>Identity</i> . There is an element e (called the <i>identity</i>) in G such that		
	ae = ea = a for all a in G.		
	3. <i>Inverses</i> . For each element a in G, there is an element b in G		
	(called an <i>inverse</i> of a) such that ab = ba = e.		
Algebraic Systems	Sets with one or more binary operations.		
	The goal of abstract algebra is to discover truths about algebraic		
	systems that are independent of the specific nature of the		
Abstract Algebra	operations.		
0	All one knows or needs to know is that these operations, whatever		
	they may be, have certain properties.		
	Concret Linear Crown of 2v2 metrices over the field 5		
GL(2, F)	Non-Abelian		
	Special Linear Group of 2x2 matrices over the field E with		
SL(2, F)	determinant 1. Non-Abelian.		
	Group of integers modulo n.		
Zn	$Z_n = \{0, 1,, n - 1\}$ for $n \ge 1$.		
	Implies the operation of addition .		
	The set of all positive integers less than n and relatively prime to n		
11(n)	under the operation of multiplication modulo n.		
0(1)	$U(n) = \{a \in Z_n \mid a < n \text{ and } gcd (a, n) = 1\}.$		
	If n is a prime, then U(n) = {0, 1,, n - 1}.		
	U(2) = {1, 2} prime		
	U(3) = {1, 2, 3} prime		
	$U(4) = \{1, 3\}$		
	$U(5) = \{1, 2, 3, 4\}$ prime		
U(n) Examples	$U(6) = \{1, 3, 5\}$		
	$U(7) = \{1, 2, 3, 4, 5, 6\}$ prime		
	$ \cup (0] - \{1, 3, 5, 7\}$		
	0(10) - (1, 5, 7, 5) $ 11/(15) - \{1, 2, 7, 7, 8, 11, 13, 14\}$		
	$ 0(13) - (1, 2, 4, 7, 0, 11, 13, 14) (18) = \{1, 5, 7, 11, 13, 17\}$		

Theorem 2.1:	In a group G, there is only one identity element.	
Uniqueness of the Identity		
Theorem 2.2:	In a group G, t	he right and left cancellation laws hold; that is, ba =
Cancellation	ca implies b = o	c, and ab = ac implies b = c.
Theorem 2.3:	For each eleme	ent a in a group G, there is a unique element b in G
Uniqueness of Inverses	such that ab =	ba = e.
	Product: g g g	g g (n factors)
n	Sum: g+g+g+g+g+	++g (n factors)
g	g ⁰ = e or identi	ty
	If g is negative	$g^{n} = (g^{-1})^{ n }$
	a• b or ab	Multiplication
	e or 1	Identity or one
Multiplicative Group	a ⁻¹	Multiplicative inverse of a
	a ⁿ	Power of a
	ab ⁻¹	Quotient
	a+b	Addition
	0	Identity or zero
Additive Group	-а	Additive inverse of a
	na	Multiple of a
	a - b	Difference
Theorem 2.4: Socks–Shoes Property	For group elements a and b, $(ab)^{-1} = b^{-1}a^{-1}$.	
Division Algorithm	k = qn + r with	0 ≤ r < n.
	q is the quotient; r is the remainder.	

Group	Operation	Identity	Form of Element	Inverse	Abelian
Ζ	Addition	0	k	-k	Yes
Q^+	Multiplication	1	<i>m/n</i> ,	n/m	Yes
			m, n > 0		
Z_n	Addition mod n	0	k	n - k	Yes
R *	Multiplication	1	x	1/x	Yes
C*	Multiplication	1	a + bi	$\frac{1}{a^2+b^2}a - \frac{1}{a^2-b^2}bi$	Yes
GL(2, F)	Matrix multiplication	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} a & b \\ c & d \end{bmatrix},$	$\begin{bmatrix} \frac{d}{ad - bc} & \frac{-b}{ad - bc} \\ -c & a \end{bmatrix}$	No
U(n)	Multiplication mod n	1	$ad - bc \neq 0$ k, gcd(k, n) = 1	$\begin{bmatrix} ad - bc & ad - bc \end{bmatrix}$ Solution to $kx \mod n = 1$	Yes
\mathbf{R}^n	Componentwise addition	(0, 0,, 0)	$(a_1, a_2,, a_n)$	$(-a_1, -a_2,, -a_n)$	Yes
SL(2, F)	Matrix multiplication	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} a & b \\ c & d \end{bmatrix},$	$\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$	No
D	a 11		ad - bc = 1		2.4
D_n	Composition	R_0	R_{α}, L	$R_{360-\alpha}, L$	No

Table 2.1 Summary of Group Examples (*F* can be any of *Q*, *R*, *C*, or Z_p ; *L* is a reflection)

Ch. 3: Finite Groups; Subgroups

Axiom / Theorem / Lemma / Definition	Description
Order of a Group (G)	The number of elements of a group (finite or infinite) is called its <i>order</i> . We will use G to denote the order of G.
Order of an Element (g)	The order of an element g in a group G is the smallest positive integer n such that $g^n = e$. (In additive notation, this would be ng = 0.) If no such integer exists, we say that g has <i>infinite order</i> . The order of an element g is denoted by $ g $.
SubgroupIf a subset H of a group G is itself a group under the op $H \le G$	
Proper Subgroup	H < G means "H is a proper subgroup of G".
Trivial Subgroup	The <i>trivial subgroup</i> of any group is the subgroup {e} consisting of just the identity element.
Modular Arithmetic	Google: To compute 13 ⁴ mod 15, just type in the search box: "13 ⁴ mod 15"
Theorem 3.1: One-Step Subgroup Test	 Let G be a group and H a nonempty subset of G. If ab⁻¹ is in H whenever a and b are in H, then H is a subgroup of G. (In additive notation, if a - b is in H whenever a and b are in H, then H is a subgroup of G.) 1. Identify the property P that distinguishes the elements of H; that is, identify a defining condition. 2. Prove that the identity has property P. (This verifies that H is nonempty.) 3. Assume that two elements a and b have property P. 4. Use the assumption that a and b have property P to show that ab⁻¹ has property P. Let G be a group and let H be a nonempty subset of G. If ab is in H
Theorem 3.2: Two-Step Subgroup Test	whenever a and b are in H (H is closed under the operation), and a^{-1} is in H whenever a is in H (H is closed under taking inverses), then H is a subgroup of G.
Not a Subgroup	 To guarantee that the subset is not a subgroup, show one: 1. Show that the <u>identity</u> is not in the set. 2. Exhibit an element of the set whose <u>inverse</u> is not in the set. 3. Exhibit two elements of the set whose <u>product</u> is not in the set.
Finite Subgroup Test	If H is closed under the operation of G, then H is a subgroup of G.

Cyclic Subgroup (a)The subgroup (a) is called the cyclic subgroup of G generated $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$ under multiplication $\langle a \rangle = \{na \mid n \in \mathbb{Z}\}$ under addition		
	In the case that G = $\langle a \rangle$ = { $a^n \mid n \in \mathbb{Z}$ }, we say that G is <i>cyclic</i> and a is a <i>generator</i> of G.	
Cyclic Group	Cyclic Group if there is an element a in G such that $G = \{a^n \mid n \in \mathbb{Z}\}$.	
	Element 'a' is called the <i>generator</i> .	
	A cyclic group may have many generators.	
Theorem 3.4:	Let G be a group, and let a be any element of G. Then, (a) is a	
/a) is a Subgroup	subgroup of G.	
	Use (a) or <a>.	
	Under Addition:	
	(2) = {0, 2, 4, 6,, 2n,}	
	$\langle 2 \rangle = Z_{20} \langle 8, 14 \rangle = \{0, 2, 4,, 18\}$	
	(3) = {0, 3, 6, 9,, 3n,}	
	$U(10) = [1, 3, 7, 9] = \langle 3 \rangle = \langle 7 \rangle$	
(a) Examples	$Z_8 = \langle 1 \rangle = \langle 3 \rangle = \langle 5 \rangle = \langle 7 \rangle = \{0, 1, 2, 3, 4, 5, 6, 7\}$	
	Under Multiplication:	
	$(3) = \{3, 9, 7, 1\} = \{1, 3, 7, 9\} \mod 10$	
	$(3) = \{3^1, 3^2, 3^3, 3^4, 3^5, 3^6\} = \{1, 3, 5, 9, 11, 13\} \mod 14$	
	The center $7(G)$ of a group G is the subset of elements in G that	
	commute with every element of G. In symbols	
Center of a Group	$7(G) = \{a \in G \mid ay = ya \text{ for all } y \text{ in } G\}$	
	[The German word for center is Zentrum]	
Theorem 3.5:		
Center Is a Subgroup	The center of a group G is a subgroup of G.	
	Let a be a fixed element of a group G. The centralizer of a in G. $C(a)$	
Centralizer of a in G	is the set of all elements in G that commute with a In symbols	
	$C(a) = \{g \in G \mid ga = ag\}.$	
Theorem 3.6:		
C(a) Is a Subgroup	For each a in a group G, the centralizer of a is a subgroup of G.	

Ch. 4: Cyclic Groups

Axiom / Theorem / Lemma / Definition	Description	
Cyclic Group	If there is an element a in G such that G = $\langle a \rangle$ = $\{a^n n \in \mathbb{Z}\}$. Element a is called the <i>generator</i> .	
Theorem 4.1: Criterion for a ⁱ = a ⁱ	Let G be a group, and let a belong to G. If a has infinite order , then $a^i = a^j$ if and only if $i = j$. If a has finite order , say, n, then $\langle a \rangle = \{e, a, a^2,, a^{n-1}\}$ and $a^i = a^j$ if and only if n divides <i>into</i> $i - j$ <i>evenly</i> .	
Corollary 1: a = 〈a〉	For any group element a , $ a = \langle a \rangle $.	
Corollary 2: a ^k = e Implies That a Divides k	Let G be a group and let a be an element of order n in G. If a ^k = e, then n divides k.	
Corollary 3: Relationship between ab and a b	If a and b belong to a finite group and ab = ba, then ab divides a b .	
Implication of Theorem 4.1	Finite Case:Multiplication in (a) is addition modulo n.Example: If (i + j) mod n = k, then $a^i a^j = a^k = a^{(i + j) \mod n}$.Multiplication in (a) works the same as addition in Z_n whenever $ a = n$.Infinite Case:Multiplication in (a) is addition.Example: $a^i a^j = a^{i+j}$.	
Theorem 4.2: $\langle a^k \rangle = \langle a^{gcd(n,k)} \rangle$ and $ a^k = n/gcd (n, k)$	Multiplication in (a) works the same as addition in Z. Let a be an element of finite order n in a group and let k be a positive integer. Then $\langle a^k \rangle = \langle a^{gcd(n,k)} \rangle$ and $ a^k = n/gcd (n, k)$. The greatest common divisor (GCD) of two nonzero integers a and b is the greatest positive integer d such that d is a divisor of both a and b.	
Corollary 1: Orders of Elements in Finite Cyclic Groups	In a finite cyclic group, the order of an element divides the order of the group.	
Corollary 2: Criterion for $\langle a^i \rangle = \langle a^j \rangle$ and $ a^i = a^j $	Let $ a = n$. Then $\langle a^i \rangle = \langle a^j \rangle$ if and only if gcd (n, i) = gcd (n, j), and $ a^i = a^j $ if and only if gcd (n, i) = gcd (n, j).	
Corollary 3: Generators of Finite Cyclic Groups	Let $ a = n$. Then $\langle a \rangle = \langle a^{j} \rangle$ if and only if gcd $(n, j) = 1$, and $ a = \langle a^{j} \rangle $ if and only if gcd $(n, j) = 1$. NOTE: gcd $(n, j) = 1$ means n and j are relatively prime.	
Corollary 4: Generators of Z _n	An integer k in Z _n is a generator of Z _n if and only if gcd(n, k) = 1.	

Theorem 4.3: Fundamental Theorem of Cyclic Groups	Every subgroup of a cyclic group is cyclic. Moreover, if $ \langle a \rangle = n$, then the order of any subgroup of $\langle a \rangle$ is a divisor of n; and, for each positive divisor k of n, the group $\langle a \rangle$ has exactly one subgroup of order k — namely, $\langle a^{n/k} \rangle$.
Corollary: Subgroups of Z _n	For each positive divisor k of n, the set (n/k) is the unique subgroup of Z_n of order k; moreover, these are the only subgroups of Z_n .
Theorem 4.4: Number of Elements of Each Order in a Cyclic Group	If d is a positive divisor of n, the number of elements of order d in a cyclic group of order n is $\phi(d)$.
Corollary: Number of Elements of Order d in a Finite Group	In a finite group, the number of elements of order d is a multiple of $\varphi(d).$

Ch. 5: Permutation Groups

Axiom / Theorem / Lemma / Definition	Description

Ch. 6: Isomorphisms

Axiom / Theorem / Lemma / Definition	Description

Ch. 7: Cosets and Lagrange's Theorem

Axiom / Theorem / Lemma / Definition	Description

Note: Skip Ch. 8

Ch. 9: Normal Subgroups and Factor Groups

Axiom / Theorem / Lemma / Definition	Description

Ch. 10: Group Homomorphisms

Axiom / Theorem / Lemma / Definition	Description

Ch. 11: Fundamental Theorem of Finite Abelian Groups

Axiom / Theorem / Lemma / Definition	Description

Ch. 12: Introduction to Rings

Axiom / Theorem / Lemma / Definition	Description

Sources:

• <u>SNHU MAT 470</u> - Real Analysis, <u>The Real Numbers and Real Analysis</u>, Ethan D. Bloch, Springer New York, 2011.