## Harold's Abstract Algebra

## Cheat Sheet

21 October 2022

## DRAFT

## Symbols

| Symbol | Name / Definition | Symbol | Name / Definition |
| :---: | :---: | :---: | :---: |
| $\emptyset$ | Empty set, set with no members | $\begin{gathered} \mathrm{R}_{0}, \mathrm{R}_{90}, \\ \mathrm{R}_{180}, \mathrm{R}_{270} \\ \hline \end{gathered}$ | Rotation |
| $\mathbb{N}$ | Natural numbers | $\mathrm{R}_{360 / \mathrm{n}}$ | Cyclic Rotation |
| $\mathbb{Z}$ | Integers (Zahlen) | H, V, D, D' | Flip (horizontal, vertical, diagonal) |
| Q | Rational numbers | (a) | The set $\left\{\mathrm{a}^{\mathrm{n}} \mid \mathrm{n} \in \mathbb{Z}\right\}$ under • (na if + ) |
| R | Real numbers | $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]^{-1}$ | 2x2 Matrix Inverse |
| C | Complex numbers | $\mathrm{Z}_{\mathrm{n}}$ | Group of integers modulo $n$ |
| F* | Nonzero Field | $\mathrm{Z}_{\mathrm{p}}$ | $\mathrm{Z}_{\mathrm{n}}$ where p a prime |
| $\subseteq$ | Is a subset of | mod | Modulus arithmetic |
| $\epsilon$ | Is an element of | GL(2, F) | General Linear Group of $2 \times 2$ matrices over the field F |
| $\infty$ | Infinity | $\mathrm{g}^{\text {n }}$ | The group operation on g n times |
| - | Degrees | \|G| | Order of a Group |
| $\leq, \neq, \geq$ | Inequalities | $\|\mathrm{g}\|$ | Order of an Element |
| $\bullet$ •• | Multiply | $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ | Greatest Common Divisor |
| $\div$ | Division | $\operatorname{Icm~(a,~b)~}$ | Least Common Multiple |
| $\mathrm{a} \mid \mathrm{b}$ | a divides b |  |  |
| $\mathrm{a}^{-1}$ | Inverse |  |  |
| <tab> |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Ch. 0: Preliminaries

| Definition | Description |
| :---: | :---: |
| Well Ordering Principle | Every nonempty set of positive integers contains a smallest member. |
| Theorem 0.1: Division Algorithm | Let a and b be integers with $\mathrm{b}>0$. <br> Then there exist unique integers $q$ and $r$ with the property that $a=b q+r$, where $0 \leq r<b$. <br> Example: For $a=17$ and $b=5$, the division algorithm gives $17=5 \cdot 3$ <br> +2 . Here $\mathrm{q}=3$ and $\mathrm{r}=2$. |
| Greatest Common Divisor (GCD) | $\operatorname{gcd}(x, y)=p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}} \cdot p_{2}^{\min \left\{\alpha_{2}, \beta_{2}\right\}} \cdot p_{k}^{\min \left\{\alpha_{k}, \beta_{k}\right\}}$ <br> Largest positive integer that is a factor of both x and y . Think Intersection ( $\cap$ ) of $\alpha_{i}, \beta_{i}$. |
|  | The greatest common divisor of two nonzero integers $a$ and $b$ is the largest of all common divisors of $a$ and $b$. We denote this integer by $\operatorname{gcd}(a, b)$. |
| Relatively Prime Integers | When gcd ( $a, b$ ) = 1, we say $a$ and $b$ are relatively prime. |
| Theorem 0.2: GCD Is a Linear Combination | For any nonzero integers $a$ and $b$, there exist integers $s$ and $t$ such that $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\mathrm{as}+\mathrm{bt}$. Moreover, $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ is the smallest positive integer of the form as +bt. |
| Corollary | If $a$ and $b$ are relatively prime, then there exist integers $s$ and $t$ such that $\mathrm{as}+\mathrm{bt}=1$. <br> Example: $\operatorname{gcd}(4,15)=1$ where 4 and 15 are relatively prime and 4 . $4+15(-1)=1$. |
| Euclid's Lemma p\|ab Implies p|a or p|b | If $p$ is a prime that divides ab , then p divides a or p divides b . |
| Theorem 0.3: <br> Fundamental Theorem of Arithmetic | Every integer greater than 1 is a prime or a product of primes. This product is unique, except for the order in which the factors appear. <br> That is, if $n=p_{1} p_{2} \ldots p_{r}$ and $n=q_{1} q_{2} \ldots q_{s}$, where the $p^{\prime} s$ and $q^{\prime} s$ are primes, then $r=s$ and, after renumbering the $q$ 's, we have $p_{i}=q_{i}$ for all i. |
| Least Common Multiple (LCM) | $\operatorname{lcm}(x, y)=p_{1}^{\max \left\{\alpha_{1}, \beta_{1}\right\}} \cdot p_{2}^{\max \left\{\alpha_{2}, \beta_{2}\right\}} \cdot p_{k}^{\max \left\{\alpha_{k}, \beta_{k}\right\}}$ <br> Smallest positive integer that is an integer multiple of both x and y . <br> Think Union $(\cup)$ of $\alpha_{i}, \beta_{i}$. |
|  | The least common multiple of two nonzero integers $a$ and $b$ is the smallest positive integer that is a multiple of both $a$ and $b$. <br> We will denote this integer by $\operatorname{Icm}(\mathbf{a}, \mathbf{b})$. <br> Example: $\operatorname{Icm}(4,6)=12$ |
| Computing ab mod n or (a+ <br> b) $\bmod n$ | Let $n$ be a fixed positive integer greater than 1. If $a \bmod n=a^{\prime}$ and $b$ $\bmod n=b^{\prime}$, then <br> $(a+b) \bmod n=\left(a^{\prime}+b^{\prime}\right) \bmod n$ <br> (ab) $\bmod \mathrm{n}=\left(\mathrm{a}^{\prime} \mathrm{b}^{\prime}\right) \bmod \mathrm{n}$ |


| Logic Gates | A logic gate is a device that accepts as inputs two possible states (on or off) and produces one output (on or off). This can be conveniently modeled using 0 and 1 and modulo 2 arithmetic. |
| :---: | :---: |
| Theorem 0.4: <br> Properties of Complex <br> Numbers | 1. Closure under addition: $(a+b i)+(c+d i)=(a+c)+(b+d) i$ <br> 2. Closure under multiplication: $\begin{aligned} & (a+b i)(c+d i)=(a c)+(a d) i+(b c) i+(b d) i^{2} \\ & =(a c-b d)+(a d+b c) i \end{aligned}$ <br> 3. Closure under division ( $\mathrm{c}+\mathrm{di} \neq 0$ ): $\begin{gathered} \frac{(a+b i)}{(c+d i)}=\frac{(a+b i)}{(c+d i)} \cdot \frac{(c-d i)}{(c-d i)} \\ =\frac{(a c+b d)+(b c-a d) i}{c^{2}+d^{2}} \\ =\frac{(a c+b d)}{c^{2}+d^{2}}+\frac{(b c-a d)}{c^{2}+d^{2}} i \end{gathered}$ <br> 4. Complex conjugation: $(a+b i)(a-b i)=a^{2}+b^{2}$ <br> 5. Inverses: <br> For every nonzero complex number $a+b i$ there is a complex number $\mathrm{c}+\mathrm{di}$ such that $(\mathrm{a}+\mathrm{bi})(\mathrm{c}+\mathrm{di})=1$ (That is, ( $a+b i)^{-1}$ exists in C ). <br> 6. Powers: <br> For every complex number $a+b i=r(\cos \theta+i \sin \theta)$ and every positive integer $n$, we have $(a+b i)^{n}=(r(\cos \theta+i \sin \theta))^{n}=r^{n}(\cos n \theta+i \sin n \theta) .$ <br> 7. $\mathrm{n}^{\text {th }}$-roots of $\mathrm{a}+\mathrm{bi}$ : <br> For any positive integer $n$ the $n$ distinct $n^{\text {th }}$ roots of $a+b i=$ $r(\cos \theta+i \sin \theta)$ are $\sqrt[n]{r}\left(\cos \frac{\theta+2 \pi k}{n}+i \sin \frac{\theta+2 \pi k}{n}\right)$ <br> for $\mathrm{k}=0,1, \ldots, \mathrm{n}-1$. |
| Theorem 0.5: <br> First Principle of Mathematical Induction | Let S be a set of integers containing a. Suppose S has the property that whenever some integer $n \geq$ a belongs to $S$, then the integer $n+$ 1 also belongs to S . Then, S contains every integer greater than or equal to a. |
| DeMoivre's Theorem | $(\cos \theta+i \sin \theta)^{n}=(\cos n \theta+i \sin n \theta)$ |
| Theorem 0.6: Second Principle of Mathematical Induction | Let $S$ be a set of integers containing a. Suppose $S$ has the property that n belongs to S whenever every integer less than n and greater than or equal to a belongs to S . Then, S contains every integer greater than or equal to $a$. |


| Equivalence Relation | An equivalence relation on a set $S$ is a set $R$ of ordered pairs of elements of $S$ such that <br> 1. (a, a) $\in R$ for all $a \in S \quad$ (reflexive property). <br> 2. $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ implies $(\mathrm{b}, \mathrm{a}) \in \mathrm{R} \quad$ (symmetric property). <br> 3. $(a, b) \in R$ and $(b, c) \in R$ imply ( $a, c) \in R$ (transitive property). <br> NOTE: It is customary to write $a R b$ instead of $(a, b) \in R$. |
| :---: | :---: |
| Theorem 0.7: <br> Equivalence Classes Partition | The equivalence classes of an equivalence relation on a set $S$ constitute a partition of S . Conversely, for any partition P of S , there is an equivalence relation on $S$ whose equivalence classes are the elements of $P$. |
| Function (Mapping) | A function (or mapping) f from a set $A$ to a set $B$ is a rule that assigns to each element a of $A$ exactly one element $b$ of $B$. The set $A$ is called the domain of $f$, and $B$ is called the range of $f$. If $f$ assigns $b$ to $a$, then $b$ is called the image of $a$ under $f$. The subset of $B$ comprising all the images of elements of $A$ is called the image of $A$ under $f$. |
|  | Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$. The composition gf is the mapping from $A$ to $C$ defined by $(g f)(a)=g(f(a))$ for all $a$ in $A$. |
| Composition of Functions | $(f \circ g)(x)=f(g(x))$ |
|  | A function $f$ from a set $A$ is called one-to-one if for every $a_{1}, a_{2} \in A$, $f\left(a_{1}\right)=f\left(a_{2}\right)$ implies $a_{1}=a_{2}$. |
| One-to-One Function |  |



## Ch. 1: Introduction to Groups

| Definition | Description |
| :---: | :---: |
| Abelian | Commutative ( $\mathrm{ab}=\mathrm{ba}$ ) <br> Named after Niels Abel, Norwegian mathematician. |
| Non-Abelian | Not commutative ( $\mathrm{ab} \neq \mathrm{ba}$ ) |
| $\mathrm{D}_{\mathrm{n}}$ : <br> Dihedral Groups | $D_{n}=$ dihedral group of order $2 n$. <br> Dihedral = having or contained by two plane faces. <br> Examples: $D_{3}, D_{4}, D_{5}, D_{6}$ |
| $D_{4}$ : <br> Dihedral Group of Order 8 | $\mathrm{D}_{4}$ (Square) <br> The eight motions $\mathrm{R}_{0}, \mathrm{R}_{90}, \mathrm{R}_{180}, \mathrm{R}_{270}, \mathrm{H}, \mathrm{V}, \mathrm{D}$, and $\mathrm{D}^{\prime}$, together with the operation composition, form a mathematical system called the dihedral group of order 8 (the order of a group is the number of elements it contains). It is denoted by $\mathrm{D}_{4}$. |
| Cayley Table | Operations table. All elements in the rows and columns, filled in with the operation results. <br> Named after Arthur Cayley, English mathematician. |
| Cyclic Rotation Group of Order n | < $R_{360 / n}$ > <br> Many objects and figures have rotational symmetry but not reflective symmetry. <br> A symmetry group consisting of the rotational symmetries of $0^{\circ}$, $360^{\circ} / n, 2\left(360^{\circ}\right) / n, \ldots,(n-1) 360^{\circ} / n$, and no other symmetries. |

## Ch. 2: Groups

| Theorem / Definition | Description |
| :---: | :---: |
| Binary Operation | Let G be a set. A binary operation on G is a function that assigns each ordered pair of elements of $G$ an element of $G$. (Closure) |
| Group | Let G be a set together with a binary operation (usually called multiplication) that assigns to each ordered pair ( $a, b$ ) of elements of G an element in G (closure) denoted by ab. We say G is a group under this operation if the following three properties are satisfied. <br> 1. Associativity. The operation is associative; that is, $(\mathrm{ab}) \mathrm{c}=\mathrm{a}(\mathrm{bc})$ for all $a, b, c$ in $G$. <br> 2. Identity. There is an element e (called the identity) in G such that $a e=e a=a$ for all $a$ in $G$. <br> 3. Inverses. For each element $a$ in $G$, there is an element $b$ in $G$ (called an inverse of a) such that $\mathrm{ab}=\mathrm{ba}=\mathrm{e}$. |
| Algebraic Systems | Sets with one or more binary operations. |
| Abstract Algebra | The goal of abstract algebra is to discover truths about algebraic systems that are independent of the specific nature of the operations. <br> All one knows or needs to know is that these operations, whatever they may be, have certain properties. <br> We then seek to deduce consequences of these properties. |
| GL(2, F) | General Linear Group of $2 \times 2$ matrices over the field F . Non-Abelian. |
| SL(2, F) | Special Linear Group of $2 \times 2$ matrices over the field F with determinant 1. Non-Abelian. |
| $\mathrm{Z}_{\mathrm{n}}$ | Group of integers modulo $n$. $\mathrm{Z}_{\mathrm{n}}=\{0,1, \ldots, \mathrm{n}-1\} \text { for } \mathrm{n} \geq 1 .$ <br> Implies the operation of addition. |
| $\mathrm{U}(\mathrm{n})$ | The set of all positive integers less than $n$ and relatively prime to $n$ under the operation of multiplication modulo $n$. $U(n)=\left\{a \in Z_{n} \mid a<n \text { and } \operatorname{gcd}(a, n)=1\right\} .$ <br> If n is a prime, then $\mathrm{U}(\mathrm{n})=\{0,1, \ldots, \mathrm{n}-1\}$. |
| U( n ) Examples | $U(2)=\{1,2\}$ prime <br> $U(3)=\{1,2,3\}$ prime <br> $U(4)=\{1,3\}$  <br> $U(5)=\{1,2,3,4\}$ prime <br> $U(6)=\{1,3,5\}$  <br> $U(7)=\{1,2,3,4,5,6\}$ prime <br> $U(8)=\{1,3,5,7\}$  <br> $U(10)=\{1,3,7,9\}$  <br> $U(15)=\{1,2,4,7,8,11,13,14\}$  <br> $U(18)=\{1,5,7,11,13,17\}$  |


| Theorem 2.1: <br> Uniqueness of the Identity | In a group G, there is only one identity element. |
| :---: | :---: |
| Theorem 2.2: Cancellation | In a group G, the right and left cancellation laws hold; that is, ba = ca implies $\mathrm{b}=\mathrm{c}$, and $\mathrm{ab}=\mathrm{ac}$ implies $\mathrm{b}=\mathrm{c}$. |
| Theorem 2.3: <br> Uniqueness of Inverses | For each element $a$ in a group $G$, there is $a$ unique element $b$ in $G$ such that $\mathrm{ab}=\mathrm{ba}=\mathrm{e}$. |
| $\mathrm{g}^{\text {n }}$ | Product: g g g g ... g ( n factors) <br> Sum: $\mathrm{g}+\mathrm{g}+\mathrm{g}+\mathrm{g}+\ldots . \mathrm{g}$ ( n factors) $\mathrm{g}^{0}=\mathrm{e}$ or identity <br> If $g$ is negative: $g^{n}=\left(g^{-1}\right)^{\|n\|}$ |
| Multiplicative Group | $a \bullet b$ or $a b$ Multiplication <br> e or 1 Identity or one <br> $a^{-1}$ Multiplicative inverse of a <br> $a^{n}$ Power of a <br> $a b^{-1}$ Quotient |
| Additive Group | $a+b$ Addition <br> 0 Identity or zero <br> $-a$ Additive inverse of $a$ <br> na Multiple of $a$ <br> $a-b$ Difference |
| Theorem 2.4: <br> Socks-Shoes Property | For group elements $a$ and $b,(a b)^{-1}=b^{-1} a^{-1}$. |
| Division Algorithm | $\mathrm{k}=\mathrm{qn}+\mathrm{r} \text { with } 0 \leq \mathrm{r}<\mathrm{n} .$ <br> $q$ is the quotient; $r$ is the remainder. |

Table 2.1 Summary of Group Examples ( $F$ can be any of $Q, R, C$, or $Z_{p} ; L$ is a reflection)

| Group | Operation | Identity | Form of Element | Inverse | Abelian |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $Z$ | Addition | 0 | $k$ | -k | Yes |
| $Q^{+}$ | Multiplication | 1 | $\begin{gathered} m / n, \\ m, n>0 \end{gathered}$ | $n / m$ | Yes |
| $Z_{n}$ | Addition $\bmod n$ | 0 | $k$ | $n-k$ | Yes |
| R* | Multiplication | 1 | $x$ | 1/x | Yes |
| C* | Multiplication | 1 | $a+b i$ | $\frac{1}{a^{2}+b^{2}} a-\frac{1}{a^{2}-b^{2}} b i$ | Yes |
| $G L(2, F)$ | Matrix multiplication | $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ | $\begin{array}{r} {\left[\begin{array}{ll} a & b \\ c & d \end{array}\right],} \\ a d-b c \neq 0 \end{array}$ | $\left[\begin{array}{cc}\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\ \frac{-c}{a d-b c} & \frac{a}{a d-b c}\end{array}\right]$ | No |
| $U(n)$ | Multiplication $\bmod n$ | 1 | $\begin{gathered} k \\ \operatorname{gcd}(k, n)=1 \end{gathered}$ | Solution to $k x \bmod n=1$ | Yes |
| $\mathbf{R}^{n}$ | Componentwise addition | ( $0,0, \ldots, 0)$ | $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ | $\left(-a_{1},-a_{2}, \ldots,-a_{n}\right)$ | Yes |
| $S L(2, F)$ | Matrix multiplication | $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ | $\begin{gathered} {\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]} \\ a d-b c=1 \end{gathered}$ | $\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$ | No |
| $D_{n}$ | Composition | $R_{0}$ | $R_{\alpha}, L$ | $R_{360-\alpha^{\prime}} L$ | No |

## Ch. 3: Finite Groups; Subgroups

| Axiom / Theorem / Lemma / Definition | Description |
| :---: | :---: |
| Order of a Group (\|G|) | The number of elements of a group (finite or infinite) is called its order. We will use \|G| to denote the order of G . |
| Order of an Element (\|g|) | The order of an element g in a group G is the smallest positive integer n such that $\mathrm{g}^{\mathrm{n}}=\mathrm{e}$. <br> (In additive notation, this would be $\mathrm{ng}=0$.) <br> If no such integer exists, we say that g has infinite order. <br> The order of an element g is denoted by $\|\mathrm{g}\|$. |
| Subgroup | If a subset $H$ of a group $G$ is itself a group under the operation of $G$, we say that H is a subgroup of G . $\mathrm{H} \leq \mathrm{G}$ |
| Proper Subgroup | H < G means " H is a proper subgroup of G". |
| Trivial Subgroup | The trivial subgroup of any group is the subgroup \{e\} consisting of just the identity element. |
| Modular Arithmetic | Google: To compute $13^{4} \bmod 15$, just type in the search box: " $13^{\wedge} 4 \bmod 15$ " |
| Theorem 3.1: One-Step Subgroup Test | Let G be a group and H a nonempty subset of G . If $\mathrm{ab}^{-1}$ is in H whenever $a$ and $b$ are in $H$, then $H$ is a subgroup of $G$. (In additive notation, if $\mathrm{a}-\mathrm{b}$ is in H whenever a and b are in H , then H is a subgroup of G .) <br> 1. Identify the property P that distinguishes the elements of H ; that is, identify a defining condition. <br> 2. Prove that the identity has property P . (This verifies that H is nonempty.) <br> 3. Assume that two elements $a$ and $b$ have property $P$. <br> 4. Use the assumption that a and b have property P to show that $\mathrm{ab}^{-1}$ has property P . |
| Theorem 3.2: <br> Two-Step Subgroup Test | Let G be a group and let H be a nonempty subset of G . If ab is in H whenever $a$ and $b$ are in $H$ ( $H$ is closed under the operation), and $a^{-1}$ is in H whenever a is in H ( H is closed under taking inverses), then H is a subgroup of G . |
| Not a Subgroup | To guarantee that the subset is not a subgroup, show one: <br> 1. Show that the identity is not in the set. <br> 2. Exhibit an element of the set whose inverse is not in the set. <br> 3. Exhibit two elements of the set whose product is not in the set. |
| Theorem 3.3: <br> Finite Subgroup Test | Let H be a nonempty finite subset of a group G . If H is closed under the operation of G , then H is a subgroup of G . |


| Cyclic Subgroup 〈a＞ | The subgroup $\langle a\rangle$ is called the cyclic subgroup of $G$ generated by $a$ ． <br> $\langle a\rangle=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ under multiplication <br> $\langle\mathrm{a}\rangle=\{\mathrm{na} \mid \mathrm{n} \in \mathbb{Z}\}$ under addition |
| :---: | :---: |
| Cyclic Group | In the case that $G=\langle a\rangle=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ ，we say that $G$ is cyclic and $a$ is a generator of G ． <br> Cyclic Group if there is an element $a$ in $G$ such that $G=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ ． <br> Element＇$a$＇is called the generator． <br> A cyclic group may have many generators． |
| Theorem 3．4： <br> 〈a〉 Is a Subgroup | Let G be a group，and let a be any element of G ．Then，$\langle\mathrm{a}\rangle$ is a subgroup of $G$ ． <br> Use 〈a〉 or＜a＞． |
| 〈a Examples | Under Addition： $\begin{aligned} & \langle 2\rangle=\{0,2,4,6, \ldots, 2 n, \ldots\} \\ & \langle 2\rangle=Z_{20}\langle 8,14\rangle=\{0,2,4, \ldots, 18\} \\ & \langle 3\rangle=\{0,3,6,9, \ldots, 3 n, \ldots\} \\ & U(10)=[1,3,7,9]=\langle 3\rangle=\langle 7\rangle \\ & Z_{8}=\langle 1\rangle=\langle 3\rangle=\langle 5\rangle=\langle 7\rangle=\{0,1,2,3,4,5,6,7\} \end{aligned}$ <br> Under Multiplication： $\begin{aligned} & \langle 3\rangle=\{3,9,7,1\}=\{1,3,7,9\} \bmod 10 \\ & \langle 3\rangle=\left\{3^{1}, 3^{2}, 3^{3}, 3^{4}, 3^{5}, 3^{6}\right\}=\{1,3,5,9,11,13\} \bmod 14 \end{aligned}$ |
| Center of a Group | The center， $\mathrm{Z}(\mathrm{G})$ ，of a group G is the subset of elements in G that commute with every element of G ．In symbols， $Z(G)=\{a \in G \mid a x=x a \text { for all } x \text { in } G\} .$ <br> ［The German word for center is Zentrum］ |
| Theorem 3．5： Center Is a Subgroup | The center of a group $G$ is a subgroup of G ． |
| Centralizer of a in G | Let a be a fixed element of a group G ．The centralizer of a in $\mathrm{G}, \mathrm{C}(\mathrm{a})$ ， is the set of all elements in G that commute with a．In symbols， $C(a)=\{g \in G \mid g a=a g\} .$ |
| Theorem 3．6： C（a）Is a Subgroup | For each a in a group G ，the centralizer of a is a subgroup of G ． |

## Ch. 4: Cyclic Groups

| Axiom / Theorem / Lemma / Definition | Description |
| :---: | :---: |
| Cyclic Group | If there is an element $a$ in $G$ such that $G=\langle a\rangle=\left\{\mathrm{a}^{\mathrm{n}} \mid \mathrm{n} \in\right.$ $\mathbb{Z}\}$. Element a is called the generator. |
| Theorem 4.1: <br> Criterion for $\mathrm{a}^{\mathrm{i}}=\mathrm{a}^{\mathrm{j}}$ | Let G be a group, and let a belong to G . If $a$ has infinite order, then $a^{i}=a^{j}$ if and only if $i=j$. If $a$ has finite order, say, $n$, then $\langle a\rangle=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}$ and $\mathrm{a}^{\mathrm{i}}=\mathrm{a}^{\mathrm{j}}$ if and only if n divides into $\mathrm{i}-\mathrm{j}$ evenly. |
| Corollary 1: $\|a\|=\|\langle a\rangle\|$ | For any group element $\mathrm{a},\|\mathrm{a}\|=\|\langle\mathrm{a}\rangle\|$. |
| Corollary 2: $\mathrm{a}^{\mathrm{k}}=\mathrm{e}$ Implies That \|a| Divides k | Let G be a group and let a be an element of order n in G . If $\mathrm{a}^{\mathrm{k}}=\mathrm{e}$, then n divides $k$. |
| Corollary 3: <br> Relationship between $\|\mathrm{ab}\|$ and $\|a\|\|b\|$ | If $a$ and $b$ belong to $a$ finite group and $a b=b a$, then $\|a b\|$ divides $\|a\|\|b\|$. |
| Implication of Theorem 4.1 | Finite Case: <br> Multiplication in $\langle\mathrm{a}\rangle$ is addition modulo n . <br> Example: If $(i+j) \bmod n=k$, then $a^{i} a^{j}=a^{k}=a^{(i+j)} \bmod n$. Multiplication in $\langle\mathrm{a}\rangle$ works the same as addition in $\mathrm{Z}_{\mathrm{n}}$ whenever $\|\mathrm{a}\|=\mathrm{n}$. <br> Infinite Case: <br> Multiplication in $\langle a\rangle$ is addition. <br> Example: $a^{i} a^{j}=a^{i+j}$. <br> Multiplication in $\langle\mathrm{a}\rangle$ works the same as addition in Z . |
| Theorem 4.2: $\left\langle a^{k}\right\rangle=\left\langle a^{\operatorname{gcd}(n, k)}\right\rangle \text { and }\left\|a^{k}\right\|=n / \operatorname{gcd}(n, k)$ | Let $a$ be an element of finite order n in a group and let k be a positive integer. <br> Then $\left\langle\mathrm{a}^{k}\right\rangle=\left\langle\mathrm{a}^{\operatorname{gcd}(n, k)}\right\rangle$ <br> and $\left\|a^{k}\right\|=n / \operatorname{gcd}(n, k)$. <br> The greatest common divisor (GCD) of two nonzero integers $a$ and $b$ is the greatest positive integer $d$ such that $d$ is a divisor of both $a$ and $b$. |
| Corollary 1: <br> Orders of Elements in Finite Cyclic <br> Groups | In a finite cyclic group, the order of an element divides the order of the group. |
| Corollary 2: <br> Criterion for $\left\langle a^{i}\right\rangle=\left\langle a^{i}\right\rangle$ and $\left\|a^{i}\right\|=\left\|a^{i}\right\|$ | ```Let \|a| = n. Then \langlea}\mp@subsup{}{}{i}\rangle=\langle\mp@subsup{a}{}{j}\rangle\mathrm{ if and only if gcd (n, i) = gcd (n, j), and }|\mp@subsup{a}{}{i}|=|\mp@subsup{a}{}{j}|\mathrm{ if and only if gcd (n, i)= gcd (n, j).``` |
| Corollary 3: <br> Generators of Finite Cyclic Groups | ```Let \|a| = n. Then }\langle\textrm{a}\rangle=\langle\mp@subsup{a}{}{j}\rangle\mathrm{ if and only if gcd (n,j)=1, and |a| = | <a}\mp@subsup{a}{}{j}|\mathrm{ if and only if gcd (n, j)=1. NOTE: gcd ( }n,j)=1\mathrm{ means }n\mathrm{ and j are relatively prime.``` |
| Corollary 4: Generators of $\mathbf{Z}_{\mathrm{n}}$ | An integer $k$ in $Z_{n}$ is a generator of $Z_{n}$ if and only if $\operatorname{gcd}(n$, k) $=1$. |


| Theorem 4.3: <br> Fundamental Theorem of Cyclic <br> Groups | Every subgroup of a cyclic group is cyclic. <br> Moreover, if $\|\langle a\rangle\|=n$, then the order of any subgroup of <br> $\langle a\rangle$ is a divisor of $n ;$ <br> and, for each positive divisor $k$ of $n$, the group $\langle a\rangle$ has <br> exactly one subgroup of order $k$ namely, $\left\langle a^{n / k}\right\rangle$. |
| :--- | :--- |
| Corollary: <br> Subgroups of $Z_{n}$ | For each positive divisor $k$ of $n$, the set $\langle n / k\rangle$ is the unique <br> subgroup of $Z_{n}$ of order $k$; moreover, these are the only <br> subgroups of $Z_{n}$. |
| Theorem 4.4: <br> Number of Elements of Each Order in <br> a Cyclic Group | If d is a positive divisor of $n$, the number of elements of <br> order $d$ in a cyclic group of order $n$ is $\phi(d)$. |
| Corollary: <br> Number of Elements of Order d in a <br> Finite Group | In a finite group, the number of elements of order $d$ is a <br> multiple of $\phi(d)$. |

Ch. 5: Permutation Groups

| Axiom / Theorem / <br> Lemma / Definition |  |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## Ch. 6: Isomorphisms

| Axiom / Theorem / <br> Lemma / Definition |  |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Ch. 7: Cosets and Lagrange's Theorem

| Axiom / Theorem / <br> Lemma / Definition |  |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Note: Skip Ch. 8

Ch. 9: Normal Subgroups and Factor Groups

| Axiom / Theorem / <br> Lemma / Definition |  |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Ch. 10: Group Homomorphisms

| Axiom / Theorem / <br> Lemma / Definition |  |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Ch. 11: Fundamental Theorem of Finite Abelian Groups

| Axiom / Theorem / <br> Lemma / Definition |  |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Ch. 12: Introduction to Rings

| Axiom / Theorem / <br> Lemma / Definition |  |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## Sources:

- SNHU MAT 470 - Real Analysis, The Real Numbers and Real Analysis, Ethan D. Bloch, Springer New York, 2011.

